
ACN: An Associative Classifier with Negative Rules

Gourab Kundu, Md. Monirul Islam, Sirajum Munir, Md. Faizul Bari
Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology, Dhaka-1000
{gourabkundu, mdmonirulislam}@cse.buet.ac.bd, {sirajum.munir,faizulbari}@gmail.com

Abstract

Classification using association rules has added a new
dimension to the ongoing research for accurate classifiers.
Over the years, a number of associative classifiers based
on positive rules have been proposed in literature. The
target of this paper is to improve classification accuracy
by using both negative and positive class association
rules without sacrificing performance. The generation
of negative associations from datasets has been attacked
from different perspectives by various authors and this
has proved to be a very computationally expensive task.
This paper approaches the problem of generating negative
rules from a classification perspective, how to generate a
sufficient number of high quality negative rules efficiently
so that classification accuracy is enhanced. We adopt
a simple variant of Apriori algorithm for this and show
that our proposed classifier “Associative Classifier with
negative rules”(ACN) is not only time-efficient but also
achieves significantly better accuracy than four other
state-of-the-art classification methods by experimenting on
benchmark UCI datasets.

Keywords: association rule, classification, data mining,
negative rule

1. Introduction

Classification is a very important problem that has
been studied for years now. The goal of the classification
algorithms is to construct a model from a set of training
data whose target class labels are known and then this
model is used to classify unseen instances. Many different
types of classification techniques have been proposed in
literature that includes decision trees [13], naive-Bayesian
methods [6], statistical approaches[11] etc.

Recently a new classification technique has come into

existence. In this technique, at first classification rules are
mined from training data using an association rule mining
algorithm and then a subset of these rules are used to build
a classifier. This technique which uses association rules for
classification is called “Associative Classification(AC)”.
Experiments have shown that these classifiers are signif-
icantly more accurate than decision tree classifiers. A
number of associative classification algorithms have been
proposed in literature but most of them use only positive
association rules and differ mainly in rule mining and
classifier construction from the set of mined rules.

One of the first algorithms to use association rules
for classification was CBA(Classification based on
Association)[12]. CBA uses the Apriori algorithm[1] in
order to discover all frequent ruleitems. Then it converts
any frequent ruleitem that passes the minimum confidence
threshold into a rule. After that it sorts the rules based on
a rule ranking criteria and selects a subset of the rules that
are needed to cover the dataset. These ordered rules are
later used for classification.

An AC approach that uses multiple rules for making
a single prediction is CMAR (Classification based on
Multiple Association Rules)[10] . Instead of using Apriori,
this method adapts the FP-tree algorithm[7] to mine
the class association rules and makes use of a CR-tree
structure to store and retrieve the mined rules. But the
major distinguishing feature from CBA is that here the
classification is performed based on a weighted χ 2 analysis
using multiple association rules. Some other associative
classifiers based on positive association rules are discussed
in [9, 22, 19, 4, 17]. A survey on these works can be found
in [16].

A positive association rule is of the form X→ Y where
X , Y both are a set of items and X

⋂
Y is φ. A negative

association rule is of the form X → Y where in addition
to being a set of items, X or Y will contain at least one
negated item. As discussed before,the idea behind most

of the existing approaches has been the mining of positive
class association rules from the training set and then
selecting a subset of the mined rules for future predictions.
However, in most cases, it is found that the final classifier
contains some weak and inaccurate rules that were selected
for covering some training instances for which no better
rules were available. These rules make poor predictions of
unseen test instances and only for these rules, the overall
classification accuracy is drastically reduced. The idea of
this paper is to eliminate these weak and inaccurate positive
rules as far as possible by accurate negative rules.

An interesting approach that uses both positive and
negative rules for classification is ARC-PAN[2]. It ex-
amines the correlation of each frequent itemset with the
class label. If the correlation is positive, a positive rule
is discovered. If the correlation is negative, two negative
rules are discovered. The negative rules produced are of
the form X → ¬ Y or ¬ X → Y which the authors term
as “confined negative association rules”. Here the entire
antecedent or consequent is either a conjunction of negated
attributes or a conjunction of non-negated attributes. The
problem with this approach is that it results in a very small
set of rules which may not be adequate to provide accurate
classification for all training and test instances.

In this paper, we introduce a new method for associative
classification named “Associative Classifier with Negative
Rules”(ACN) that extends the Apriori algorithm to mine a
relatively large set of negative association rules and then
uses both positive and negative rules to build a classifier.
The set of mined negative rules and the way ACN generates
them are totally different from ARC-PAN. The benefit of
our approach is that the number of negative rules generated
is much larger and so in general, a lot of good (high
confidence and high support) negative rules are found that
can be used in place of some weak positive rules. As a
result, the number of inaccurate positive rules in the final
classifier is greatly reduced and classification accuracy
is increased. Moreover, we only consider those negative
rules that arise naturally during the Apriori rule mining
process so that no extra overhead is needed. The major
bottleneck in associative classification is the computational
cost for the discovery of association rules and if a classifier
uses negative rules together with positive rules, this cost
can increase further. ACN tries to address this issue by
mining a relatively large set of negative rules but with as
low overhead as possible. So it adopts a variant of Apriori
algorithm and generates a set of negative rules from the
available frequent positive itemsets. These negative rules
come almost free-of-cost since their support and confidence
can be readily calculated from available positive rules and
no extra database scan is required.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the basic concepts of negative associa-
tion mining. Section 3 presents ACN in details. Section 4
presents our experimental results and finally in section 5,
we conclude the paper with some remarks.

2. Negative Association Mining

Efficient mining of negative association rules has
recently received much attention from a large group of
researchers. Negative associations can inform us of facts
like “If a customer purchases Coke, he is not likely to pur-
chase Juice.” etc. Such associations are quite natural and
occur frequently in practice. However, mining transactional
databases for negative associations is really challenging
because typically a super-store contains thousands of items
and each transaction contains only a few of them. As
a result, each transaction has a large number of negated
or absent items and the number of possible negative
associations under the support-confidence framework
turns out to be overwhelmingly large. Moreover, a large
portion of the discovered rules may be uninteresting from
the user’s perspective. These difficulties have forced
researchers to incorporate additional rule interestingness
measures[15, 20] over the support-confidence framework
or incorporate domain knowledge[14, 23] to reduce the
search space.

However, it is evident that important differences exist
between the mining of negative associations in transac-
tional databases and the mining of them in classification
datasets. Firstly, in classification datasets, typically the
number of attributes is not large and each attribute has
a small number of possible values. So the value for an
attribute in a record indicates the absence of other possible
values for that attribute. This is much smaller compared to
the number of absent items in a transaction in a super-store
database. Secondly, the purpose of mining is on increasing
classification accuracy rather than presenting the set of
mined rules to the user and satisfying his interest. Thirdly,
the process of negative rule generation must be as cheap as
possible to avoid further increasing the complexity of the
mining phase of an associative classifier.

Keeping the above challenges in mind, we designed
an efficient algorithm for generation of both positive and
negative rules. Using both sets of rules, we were able to
obtain classification accuracy higher than other methods.
A number of negative rule mining algorithms have already
been proposed in the literature[23, 20, 3, 21, 14, 18, 15].
However, to the best of our knowledge, the algorithm for
negative rule mining in ACN best meets the challenges

described above. This approach is novel and has not been
introduced in literature before.

3 ACN

This section describes ACN in more details. First, we
discuss how ACN generates rules, then we present the clas-
sifier builder for ACN and finally we discuss different prun-
ing strategies to reduce the number of generated rules.

3.1 ACN Rule Generator

Let a relational schema contains n data attributes
(A1,A2,. . . , An) and one class attribute Z. Each attribute
has a set of possible values. Each record is of the form
(a1,a2,. . . ,an, z) where a1,a2,. . . ,an are the values of the
corresponding data attributes and z is the class label. Given
a set of training instances, the task of a classifier is to learn
the relation between set of attribute values to class label
and later use this relation to predict class labels for test
instances from the values of their data attributes only.

For mining class association rules using Apriori, each
itemset is considered to be of the form (conditionset, z)
which represents a rule: conditionset→z where condition-
set is a set of (attribute, value) pairs and z is a class label.
The terms rule and itemset will be used interchangeably
afterwards and should be understood from context. The rule
has confidence equal to (ruleSupportCount / conditionSup-
portCount) * 100% where, conditionSupportCount is the
number of cases in the dataset D that contain conditionset
and ruleSupportCount is the number of cases in the dataset
D that contain conditionSet and are labeled with class
z. The rule has support equal to (ruleSupportCount/|D|)
*100%, where |D| is the size of the dataset.

The idea behind the Apriori algorithm is the property
that all subsets of any frequent itemset must also be frequent
. This allows Apriori to generate the frequent itemsets in a
level wise manner. In the following discussion, we assume
that the notation Ck represents the candidate itemsets of
length k and Lk represents the frequent itemsets of length k
generated by Apriori. We also assume that the notation li[j]
refers to the j’th item in li where li represents an itemset(li
ε Lk and 1 ≤ j ≤ k). Obviously for all k, Lk is a subset
of Ck and each member of Lk has support higher than the
user specified support threshold. In Apriori, there are two
steps: the join step and the prune step. In the join step; a
set of candidate itemsets Ck is generated by joining Lk−1

with itself. If we assume that the items in the itemset are
sorted in lexicographic order, then members l1 → z and
l2 →z of Lk−1 are joinable if (l1[1]=l2[1]) ∧ (l1[2]=l2[2])

∧ (l1[3]=l2[3]) ∧ . . . (l1[k-2]=l2[k-2])∧(l1[k-1] <l2[k-1]).
The resulting rule generated by joining l1 and l2 is l=l1[1]
∧ l1[2] ∧ . . .∧ l1[k-1] ∧ l2[k-1]→ z. Now comes the prune
step of Apriori. It checks to see whether the all subsets
of the generated candidate itemset are frequent. If not,
that itemset cannot be frequent and can immediately be
discarded. Otherwise, a full database scan must be made to
count the support for the new itemset to decide whether it
is actually frequent or not.

We call each candidate itemset for which all subset of
itemsets are frequent, a “legal candidate”. For each literal
of this legal candidate, ACN replaces this literal with the
corresponding negated literal, creates a new negative rule
and adds it to the negative ruleSet. The generation of pos-
itive rules continues without disruption and the abundant
but valuable negative rules are produced as by-products of
the Apriori process.

For the trivial cases, the set of frequent 1 positive rule
items are generated without any join step. Frequent 1
negative rules are generated by simply considering the
negation of the single antecedent of each positive rule item.

Example :
We will explain the rule generation of ACN using
an example. Let us consider a case with 5 data at-
tributes A,B,C,D,E and one class attribute Z. The
domains for the four data attributes are respectively
{a1,a2,a3},{b1,b2,b3,b4},{c1,c2},{d1,d2,d3},{e1,e2,e3,e4}.
Z can take on the possible values of y and n.

Suppose, in the Apriori rule mining process, the set of
frequent ruleitems of length 3 are found to be a1 ∧ b1 ∧ c1
→ y, a1 ∧ b1 ∧ d1→y, b1 ∧ c1 ∧ d1→y, a2 ∧ b2 ∧ c2→n,
a2 ∧ b2 ∧ d4→n, b1 ∧ c1 ∧ e3→ n.

Now the set of candidate ruleitems of length 4 after join
step is a1 ∧ b1 ∧ c1 ∧ d1 → y, a2 ∧ b2 ∧ c2 ∧ d4 → n)
Out of these two candidates, only the first one (a1 ∧ b1 ∧
c1 ∧ d1→ y) possibly can be frequent since all its subsets
are frequent as found from the set of frequent ruleitems of
length 3. So according to our definition, it will be a legal
candidate and from this ruleitem, four rules of the form ¬
a1 ∧ b1 ∧ c1 ∧d1→ y, a1 ∧ ¬ b1 ∧c1 ∧d1→ y, a1 ∧b1 ∧
¬ c1∧d1→ y and a1∧b1∧c1∧ ¬ d1→ y will be generated.
In this way, negative rules will be generated in all phases
of the Apriori algorithm. These negative rules will not take
part in generation of any new rule but they will compete for
a place in the final classifier with the positive rules. Please
note that each legal candidate ruleitem with n number of
literals in the antecedent will generate n new negative rules,

even if the candidate ruleitem turns out to be infrequent.

The algorithm for ACN rule generator is presented
in Figure1.positive and negative rules of length 1 are mined
in lines 1 and 2 respectively . Lines 3-15 are similar to
Apriori rule generation process except in lines 5-10, where
in each phase of Apriori, negative rules are produced from
legal candidates and in line 12 where supports for these
rules are calculated from supports of legal candidates
of that phase and supports of frequent positive rules of
previous phase. In line 14, negative rules are pruned based
on a support threshold. Finally, in line 16, all positive
and negative rules are taken together to form the class
association ruleset for ACN.

1 L1=frequent-1-Positive-itemsets(D)
2 N1=frequent-1-Negative-itemsets(D)
3 for(k=2;Lk−1!=empty;k++)
4 PCk= legal candidates generated for

level k.
5 for each legal candidate generated
6 for each literal on the candidate
7 create a new negative rule by

negating that literal.
8 add this rule to NCk.
9 end
10 end
11 calculate support for each rule of

PCk by scanning the database.
12 calculate support for each rule of

NCk from supports of members of PCk

and Lk−1.
13 Lk=candidates in PCk that pass

support threshold.
14 Nk=candidates in NCk that pass

support threshold.
15 end
16 Return L=L1 ∪ L2 ∪ . . . ∪ Lk−2 ∪ N1 ∪ N2

∪ . . . ∪ Nk−2

Figure 1. Algorithm for ACN Rule Generator

3.2 Classifier Builder

The classifier builder for ACN is presented in Figure2.
(Line 1)ACN sorts the set of positive and negative rules
on the following rule ranking criteria, a rule Ri will have
higher rank than rule Rj if and only if 1) conf(Ri) >
conf(Rj) or 2)conf(Ri) = conf(Rj) but correlation(Ri) >
correlation(Rj) or 3) conf(Ri) = conf(Rj) and correla-
tion(Ri) = correlation(Rj) but sup(Ri) > sup(Rj) or 4)

conf(Ri) = conf(Rj) and correlation(Ri) = correlation(Rj)
and sup(Ri) = sup(Rj) but size of conditionset of Ri <
size of conditionset of Rj or 5) conf(Ri) = conf(Rj) and
correlation(Ri) = correlation(Rj) and sup(Ri) = sup(Rj)
and size of conditionset of Ri = size of conditionset of
Rj but Ri is a positive rule and Rj is a negative rule.
After sorting, ACN builds a classifier based on database
coverage similar to CBA. In lines 2-11,ACN takes each
rule according to the sorted order and tests if it can provide
correct classification for at least one remaining training
example. If it can, ACN checks to see if it is a positive
or negative rule. If it is a positive rule,it is immediately
taken in the final classifier(lines 7-9). On the other hand,
if it is a negative rule, ACN calculates the accuracy of
the rule on the examples remaining. This rule is taken in
the final classifier only if the accuracy on the remaining
examples is beyond a user-defined threshold(lines 4-6). In
this way, ACN proceeds until all rules have been examined
or all examples have been covered. In case database is
uncovered, the default rule is the majority class from
uncovered examples. Otherwise it is simply the majority
class from the entire training set.

1 Sort rules based on rule ranking criteria
2 For each rule taken in order
3 If the rule classifies at least one remaining training

example correctly
4 If the rule is a negative rule and accuracy on

remaining data>threshold
5 Include that rule in classifier and delete those

examples
6 end
7 If the rule is a positive rule
8 Include the rule in classifier and delete those

examples
9 end
10 end
11 end
12 If database is uncovered
13 select majority class from remaining examples
14 else select majority class from entire training set.
15 end

Figure 2. Algorithm for ACN Classifier Builder

3.3 Pruning Strategies

ACN adopts several pruning strategies to cut down
the number of generated rules. In the first strategy, only
negative rules are pruned. Consider two rules l and m from
which a negative rule n is produced. Let, l = l[1] ∧ l[2] ∧
. . .∧ l[k]⇒ z and m = l[1] ∧ l[2] ∧ . . .∧ l[i-1] ∧ l[i+1] ∧
. . .∧ l[k]⇒ z and n = l[1] ∧ l[2] ∧ . . .∧ ¬ l[i] ∧ . . .∧ l[k]
⇒ z. If confidence of l > confidence of m , it can be proved
that confidence of n < confidence of m. So according to
our rule ranking criteria, m will precede n and n can be
pruned because the coverage of m is a superset of coverage
of n.

Secondly, ACN prunes all rules that have confidence
less than the minimum confidence.

Thirdly, ACN calculates pearson’s correlation coefficient
for each rule(both positive and negative) and prunes a rule if
its correlation measure is below a user-specified threshold.

3.4 Time-Efficiency of ACN:

In this section, we theoretically prove that ACN does
not perform any extra dataset scan to count the support or
confidence of the generated negative rules. So there is no
big I/O overhead for generating the negative rules.

Theorem: ACN performs no extra dataset scan
than normal Apriori Process.
Proof:
The proof is by contradiction. Suppose at some pass of
Apriori, ACN generates a negative rule l1 ∧ l2 ∧ . . .∧ li−1

∧ ¬ li ∧ . . .∧ lp⇒ z for which the support and confidences
cannot be calculated without a database scan. This rule
can only be generated from a candidate ruleitem l1 ∧ l2
∧ . . .∧ li−1 ∧ li ∧ . . .∧ lp ⇒ z. According to the rule
generation method of ACN, this ruleitem must be a legal
ruleitem, i.e., all subsets of this ruleitem of length p-1
must be frequent. As a result, the ruleitem of the form l1
∧ l2 ∧ . . .∧ li−1 ∧ li+1 . . .∧ lp ⇒z must be frequent and
its support and confidences must have been calculated in
the previous pass of the Apriori algorithm. For the legal
candidate ruleitem l1 ∧ l2 ∧ . . .∧ li−1 ∧ li ∧ . . .∧ lp ⇒
z, support and confidence will be calculated via database
scan at current pass. Now for the rule l1 ∧ l2 ∧ . . . li−1 ∧
¬ li ∧ . . .∧ lp ⇒ z we can obtain,

supp (l1 ∧ l2 ∧ . . . li−1 ∧ ¬ li ∧ . . .∧ lp ⇒ z)= supp(l1
∧ l2 ∧ . . . ∧ li−1 ∧ li+1 . . . ∧ lp⇒ z) - supp(l1 ∧ l2 ∧
. . .∧ li−1 ∧ li ∧ . . . ∧ lp ⇒ z)

supp(l1 ∧ l2 ∧ . . . ∧ li−1 ∧ ¬ li . . . ∧ lp)= supp (l1 ∧ l2

∧ . . . ∧ li−1 ∧ li+1 ∧ . . . ∧ lp)-supp(l1 ∧ l2 ∧ . . . ∧ li−1 ∧
li ∧ li+1 ∧ . . . ∧ lp)
conf (l1 ∧ l2 ∧ . . . li−1 ∧ ¬ li ∧ . . . ∧ lp ⇒ z)= supp (l1 ∧
l2 ∧ . . . li−1 ∧ ¬ li ∧ . . .∧ lp ⇒ z) / supp(l1 ∧ l2 ∧
. . .∧ li−1 ∧ ¬ li . . .∧ lp)

So no such negative rule will be generated by ACN for
which a database scan will be needed to count the support
and confidence. So ACN performs exactly the same number
of dataset scans as Apriori.

Figure 3. Support and Confidence calculation
of negative rule items from other positive rule
items

So ACN does not need to perform any extra database
scan to calculate support and confidences of the generated
negative rules. For any rule, to gather the support and
confidence values, we need to consult O(r) records where
r is the number of records in the database. But here the
support and confidence of a negative rule can be calculated
in O(1) time and no I/O operation is needed. Since I/O
overhead is very large compared to the processor time
required for calculating the support and confidence values
for negative rules from their positive counterparts, the
mining phase of ACN remains time-efficient.

Figure 3 graphically shows an example how ACN calcu-
lates the support and confidence for negative rules. Suppose
two rules l1 ∧ l2⇒z and l1 ∧ l3⇒z are frequent. Now Apri-
ori will generate a candidate l1 ∧ l2 ∧ l3 ⇒z and count its
support. Since the coverage region for l1 ∧ l2 ∧ l3 ⇒z is
the region where the coverage regions for both rules (l1 ∧ l2
⇒z) and (l1 ∧ l3 ⇒z) overlap, ACN will be able to calcu-
late the support and confidences of two new negative rules

l1 ∧ l2 ∧ ¬ l3⇒z and l1 ∧ ¬ l2 ∧ l3⇒z using the equations
described above.

4 Experimental Tests

In this section, we present some experimental facts re-
garding ACN and also compare it with other state-of-the-art
classification algorithms in terms of accuracy.

Table 1. Number of positive and negative
rules generated for two data sets

Confidence Diabetes Diabetes Heart Heart
+ rules - rules + rules - rules

50-60% 223 571 3438 10496
60-70% 200 546 1474 4823
70-80% 163 520 1770 5201
80-90% 133 448 952 2917
90-100% 142 474 999 2900

Table 1 gives the number of positive and negative rules
generated in experiments on two data sets Diabetes and
Heart. From the table, it is evident that the number of
generated negative rules is several times in number than
the number of generated positive rules. In general, a rule is
good if it has high confidence. So taking the negative rules
into account, ACN generates more good rules than other
classification methods that generate only positive rules. So
the class association rule set for ACN is much larger and
richer.

Table 2 gives the comparison of accuracy among ACN,
C4.5, CBA and CMAR. The accuracy of ACN was obtained
by 10 fold cross validation over 16 datasets from UCI ML
repository[5]. We have used C4.5’s shuffle utility to shuffle
the datasets. Discretization of continuous attributes is done
using the same method in CBA.

For ACN, the minimum confidence was set to 50%,
the correlation coefficient threshold was set to 0.2 and the
remaining accuracy threshold for negative rules was set to
55%. It is possible to use two different support thresholds
for pruning positive and negative rules. However, in the
experimental tests, support threshold was set to 1% for
both types of rules. We conducted several experiments by
varying these parameter values and finally decided on the
values that resulted in best classification accuracy.

For C4.5, since the rule method has better accuracy than
decision tree method, we only present the results for the

Table 2. Comparison of C4.5, CBA, CMAR and
ACN on accuracy

Dataset ACN CMAR CBA C4.5
diabetes 76.3 75.8 74.5 74.2

pima 75.1 75.1 72.9 75.5
tic-tac 99.7 99.2 99.6 99.4

iris 95.3 94 94.7 95.3
heart 82.2 82.2 81.9 80.8

lymph 83.1 83.1 77.8 73.5
glass 73.8 70.1 73.9 68.7
austra 85.5 86.1 84.9 84.7
led7 71.9 72.5 71.9 73.5
horse 83.7 82.6 82.1 82.6
sonar 79.8 79.4 77.5 70.2
hepati 83.2 80.5 81.8 80.6

crx 85.2 84.9 84.7 84.9
cleve 81.5 82.2 82.8 78.2
hypo 98.9 98.4 98.9 99.2
sick 97.3 97.5 97 98.5

Average 85.4 84.6 84.3 83.0

rule method.

For CBA and CMAR, we conducted the experiments
using the same parameter settings originally proposed by
their authors. For CBA, the minimum support is set to 1%
and minimum confidence to 50%. Other parameters remain
default. For CMAR, the support and confidence thresholds
are set as it is in CBA. The database coverage threshold
is set to 4 and the confidence difference threshold is set to
20%.

From Table2, we see that the average accuracy of ACN
is better than CBA, CMAR and C4.5. Moreover, out of the
16 datasets, ACN achieves the best accuracy on more than
half (9) datasets.

Table 3 gives the comparison of accuracy among ACN
and ARC-PAN. We have used only 6 datasets for compari-
son here since the accuracy of ARC-PAN was available for
these 6 datasets only.

For ARC-PAN, we consider the results obtained when all
rules (both positive and negative) are used for classification.

From table 3, we see that the win-loss-tie record of ACN
against ARC-PAN is 4-2-0.

Table 3. Comparison of ACN and ARC-PAN on
accuracy

Dataset ACN ARC-PAN
diabetes 76.3 74.9

pima 75.1 73.1
iris 95.3 94.0

heart 82.2 83.8
led7 71.9 71.1

breast 95.3 96.2
Average 82.68 82.18

5 Conclusions

In this paper we proposed a novel classification algo-
rithm ACN that mines both positive and negative class
association rules and uses both sets for classification. We
showed that the number of generated negative rules is
large and so using them in place of some weak positive
rules can enhance classification accuracy. Our experiments
on UCI datasets show that ACN is consistent, highly
effective at classification of various kinds of databases
and has better average classification accuracy compared to
C4.5,CBA,CMAR and ARC-PAN.

6 Acknowledgement

This work is performed as a part of undergraduate thesis
in the Department of Computer Science and Engineering
of Bangladesh University of Engineering and Technology
(BUET)[8]. Our special thanks to BUET for providing
such a good environment of research activities in the field
of Computer Science and Engineering.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining asso-
ciation rules. In VLDB, Chile, September 1994.

[2] M. Antonie and O. R. Zaiı̈ne. An associative classifier based
on positive and negative rules. In DMKD, Paris, France, June
2004.

[3] M. Antonie and O. R. Zaı̈ne. Mining positive and negative
association rules: an approach for confined rules. In Prin-
ciples and Practice of Knowledge Discovery in Databases,
2004.

[4] F. Berzal, J.-C. Cubero, D. Sänchez, and J. M. Serrano.
ART: A hybrid classification model. Machine Learning,
54(1), January 2004.

[5] C. Blake and C. Merz. UCI repository of machine learning
databases.

[6] R. Duda and P. Hart. Pattern Classification and Scene Anal-
ysis. John Wiley and Sons, 1973.

[7] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In SIGMOD, dallas, Texas, 2000.

[8] G. Kundu, M. M. Islam, S. Munir, and M. F. Bari. New
algorithms for associative classifications. In Undergradu-
ate Thesis, Department of Computer Science and Engineer-
ing, Bangladesh University of Engineering and Technology,
2007.

[9] G. Kundu, S. Munir, M. F. Bari, M. M. Islam, and
K. Murase. A novel algorithm for associative classification.
In International Conference on Neural Information Process-
ing, Japan, 2007.

[10] W. Li, J. Han, and J. Pei. Accurate and efficient classification
based on multiple class association rules. In ICDM, San
Jose, CA, November 2001.

[11] T. Lim, W. Loh, and Y. Shih. A comparison of prediction
accuracy, complexity, and training time of thirty-three old
and new classification algorithms. Machine Learning, 39,
2000.

[12] B. Liu, W. Hsu, and Y. Ma. Integrating classification and
association rule mining. In KDD, New York, August 1998.

[13] J. Quinlan. C4.5:Programs for Machine Learning. Morgan
Kaufmann, 1993.

[14] A. Savasere, E. Omiecinski, and S. Navathe. Mining for
strong negative associations in a large database of customer
transactions. In ICDE, Florida, USA, 1998.

[15] S.Brin, R. Motwani, and C.Silverstein. Beyond market bas-
kets: Generalizing association rules to correlations. In ACM
SIGMOD, Tucson, Arizona, 1997.

[16] F. Thabtah. A review of associative classification mining.
The Knowledge Engineering Review, 22(1), March 2007.

[17] F. Thabtah, P. Cowling, and Y. Peng. MCAR: Multi-class
classification based on association rules. In 3rd ACS/IEEE
International Conference on Computer Systems and Appli-
cations, Cairo, Egypt, 2005.

[18] D. Thiruvady and G. Webb. Mining negative association
rules using grd. In PAKDD, Sydney, Australia, 2004.

[19] J. Wang and G. Karypis. HARMONY: Efficiently mining
the best rules for classification. In SDM, California, USA,
2005.

[20] X. Wu, C. Zhang, and S. Zhang. Efficient mining of both
positive and negative association rules. ACM Trans. on In-
formation Systems, 22(3), 2004.

[21] P. Yan, G. Chen, C. Cornelis, M. D. Cock, and E. Kerre.
Mining positive and negative fuzzy association rules. In
LNCS 3213, 2004.

[22] X. Yin and J. Han. CPAR: Classification based on predictive
association rules. In SDM, California, USA, 2003.

[23] X. Yuan, B. P. Buckles, Z. Yuan, and J. Zhang. Mining neg-
ative association rules. In Seventh International Symposium
on Computers and Communications, Italy, June 2002.

