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Abstract—Human sensing, motion trajectory estimation, and
identification are central to a wide range of applications in
many domains such as retail stores, surveillance, public safety,
public address, smart homes and cities, and access control.
Existing solutions either require facial recognition or installation
and maintenance of multiple units, or they lack long-term re-
identification capability. In this paper, we propose a novel system
– called EyeFi– that combines WiFi and camera on a standalone
device to overcome these limitations. EyeFi integrates a WiFi
chipset to an overhead camera and fuses motion trajectories ob-
tained from both vision and RF modalities to identify individuals.
In order to do that, EyeFi uses a student-teacher model to train
a neural network to estimate the Angle of Arrival (AoA) of WiFi
packets from the CSI values. Based on extensive evaluation using
real-world data, we observe that EyeFi improves WiFi CSI based
AoA estimation accuracy by more than 30% and offers 3,800
times computational speed over the state-of-the-art solution. In a
real-world environment, EyeFi’s accuracy of person identification
averages 75% when the number of people varies from 2 to 10.

I. INTRODUCTION

Human sensing, motion trajectory estimation, and iden-
tification have a wide range of applications, including in
retail stores, surveillance, public safety, public address, and
in access control. For example, in retail stores, it is useful
to capture customer behavior to determine an optimal layout
for product placement, detecting re-appearing shoppers after
weeks to track shopper retention rate, separating employees
from shoppers to generate an accurate heatmap of motion
pattern of (only) shoppers. For surveillance, it is useful to
identify and track a limited set of people from a crowd, e.g.,
tracking undercover police agents from a group of people to
ensure their safety. Once a class of people is identified, that can
be leveraged for public address based on additional contexts.
For example, when an active shooter in a building has been
identified through a security camera, targeted and customized
messages can be sent to different groups of people in different
parts of the building through accurate identification to help to
find safe escape routes – instead of sending a generic SMS to
everyone, possibly including the shooter.

A wide variety of sensing technologies exist for human sens-
ing, motion trajectory estimation, and identification that uses
cameras, WiFi, Bluetooth, and ultrasonic sensors. However,
there are shortcomings of each of these sensing modalities.
For example, ultrasonic sensor-based identification [10] does
not scale to thousands of reappearing shoppers in retail stores.
Camera-based solutions suffer from illumination, occlusion,
background cluttering, and change of perspective and fail to
support long term identification, e.g., detecting a shopper after

two weeks when they show up in a different colored dress in a
retail store when body appearances based identification is ap-
plied [9]. Facial recognition can be potentially used for person
identification at scale. However, facial recognition is banned
in many places, e.g., San Francisco [2], and it is difficult to
employ in some settings such as in retail stores where typically
panoramic cameras mounted on ceilings can hardly see faces.
Sniffing WiFi MAC addresses provide coarse-grained location
information, e.g., a shopper is within 30 meter radius of a
WiFi access point without providing location insights to infer
customer-product interaction. To achieve precise localization
using WiFi, multiple WiFi beacons or receiving units need to
be set up, maintained, and coordinated, which can be very
expensive [12].

In this paper, we propose to fuse two powerful sensing
modalities – WiFi and camera – in order to overcome the
aforementioned limitations of the state-of-the-art solutions. We
call our proposed solution EyeFi. EyeFi does not require fa-
cial recognition, provides long-term re-identification, does not
require deployment and maintenance of multiple WiFi units,
and has the potential to provide such intelligent capabilities
on a standalone device. To this end, EyeFi integrates a WiFi
chipset (with multiple antennas) to a camera. As a result, a
single EyeFi unit can detect, track, and re-identify people as
far as the camera can see. Our current implementation of EyeFi
uses a panoramic camera mounted on a ceiling. However, other
types of cameras such as a bullet camera will also work.

EyeFi uses the on-board camera to detect, track, and esti-
mate the motion trajectories of the people in its field of view.
Simultaneously, using the on-board WiFi chipset, EyeFi over-
hears WiFi packets from nearby smartphones and extracts the
Channel State Information (CSI) data from the WiFi packets.
The CSI information is used to estimate the Angle of Arrival
(AoA) of the smartphone from the EyeFi unit. Compared to
existing WiFi-based AoA estimation techniques [12], EyeFi
uses a smartphone in motion as a transmitter (not a stationary
desktop computer), uses a low sampling rate (around 23 pack-
ets per second), and uses a novel teacher-student based visually
guided neural network to speed up the AoA estimation by
over 3,800 times. For each person (i.e., smartphone) generating
the WiFi traffic, a sequence of AoAs is estimated to capture
the motion trajectory of the individual. Then EyeFi performs
cross-modal trajectory matching to determine the identity of
the individuals. It is based on the assumption that most people
use smartphones and the same smartphone is usually used
for an extended period of time. Also, as smart watches are



becoming popular and getting equipped with WiFi chipsets
(e.g., Samsung Gear S3 and Apple Watch 4), EyeFi can
leverage wireless devices beyond smartphones. Note that the
MAC addresses can be hashed to safeguard the privacy of the
individuals, but it is still useful for long-term re-identification
and behavior analysis.

This work has the following contributions:
• First, we design and implement a novel multi-modal

sensing system called EyeFi, which is the first system that
fuses WiFi CSI with camera for human sensing, motion
trajectory estimation, and long-term identification and has the
potential to offer such analytics on a standalone device. EyeFi
overcomes several limitations of the state-of-the-art solutions
as it does not require the use of facial recognition and the cost
of deployment and installation of multiple WiFi units.
• Second, since no such system and datasets are available,

we collect over 74 GB of data containing videos and WiFi
CSI values of over one million WiFi packets with over 15
volunteers from two different environments to develop and
test our solution. We annotate a major portion of the dataset1.
• Third, we develop a novel student-teacher based neural

network to estimate AoA from CSI values. Instead of just
using camera-based motion trajectory as the ground truth,
we force the network to regress the AoA of state-of-the-art
SpotFi algorithm [12], and thereby, forcing the network to
learn multipaths and estimate AoA more accurately. We also
propose novel techniques to smooth the WiFi-based trajectory
for cross-modal matching.
• Finally, based on extensive evaluation using real-world

data, we find that EyeFi improves WiFi CSI-based AoA
estimation accuracy by more than 30% and offers 3,800
times computational speed up over the state-of-the-art solution,
enabling EyeFi a real-time system. We observe that the average
accuracy of EyeFi for person identification is 75% when the
number of people varies from 2 to 10.

II. USAGE SCENARIOS
We describe two real-world usage scenarios of EyeFi.
• Customer Behavior Analysis. Once a customer arrives

at a store, his smartphone generates WiFi traffic to discover
local access points. After he connects to the local WiFi access
point, his checking of notifications, viewing of websites for
better prices or deals of similar items, listening of SpotiFi
music, or messaging of friends generates more WiFi traffic.
All of these WiFi traffic is overheard by the WiFi chipset
of EyeFi system. EyeFi extracts the MAC address and CSI
values from the WiFi packets, timestamps each value, and
records them. Using our proposed algorithm, EyeFi performs
AoA estimation and matches the AoA sequence with one of
the trajectories observed from the camera. Due to the use of
the MAC address, the customer can be identified over a long
period and even at a different store. EyeFi hashes the MAC
address to anonymize the customers, but can still generate
high-level analytics of aggregated customer behavior.

1More information on EyeFi data and deployment can be found at the
project page https://github.com/munir01/EyeFi

• Emergency Situation. During emergency situations, EyeFi
can send location and person-specific targeted messages to
guide people to safety. For example, in a retail environment,
EyeFi can send different messages to employees who know
the store area, law enforcement officers that are armed, and
customers who need help. In case of an emergency, such as the
presence of an active shooter, the law enforcement officers can
be notified of the shooter’s exact location (determined using
cameras) so that they can take proper actions, employees can
be instructed to assist customers and to commence emergency
protocol, and customers can be given specific instructions on
their phones based on their location (e.g., the nearest and safe
escape route or a safe hiding place).

III. BACKGROUND
A. WiFi AoA Estimation

In a WiFi network, a transmitter and a receiver communicate
by sending packets back and forth through a certain band.
The communication band contains multiple channels in which
each channel is a certain range of frequencies. During the
transmission, the Channel State Information (CSI), which de-
scribes the properties of the channel, is being recorded by the
receiver. The properties of such channels are a description of
the combined effect of the scattering, fading, and power decay
between the transmitter and receiver. The WiFi chipset natively
estimates the Channel State Information (CSI) to improve
communication efficiency. With recent studies, researchers
have found that CSI can be used for WiFi sensing, including
but not limited to angle of arrival estimation, human detection,
and breath detection.

For the angle of arrival (AoA) estimation, one classical
method is the MUSIC algorithm [19]. If two antennas are sep-
arated d distance apart, the additional phase shift introduced
due to the distance is −2π× d× sin(θ)× f/c, where θ is the
AoA, f is the signal frequency, and c is the speed of light.
The MUSIC algorithm works by estimating the steering matrix
A in X = AF , where X is the measurement matrix of the
received signal, and F is the matrix of complex attenuation. In
a recent WiFi-based localization algorithm [12], the AoA of
the direct path (which is relevant to the localization problem)
is isolated by taking the eigenvector of the matrix, XXH , for
which, the eigenvalue is zero. The eigenvector goes through
further processing to obtain the direct path.

IV. SYSTEM DESIGN
A. Overview

EyeFi is a framework that fuses information from visual
domain captured from camera and CSI measurements of WiFi
packets to jointly track human motion trajectories and identify
them for many applications. Using on board computer vision
algorithm, the camera detects people, estimates their location
and motion trajectories, but unable to identify and re-identify
people across time and/or multiple cameras without a shared
field of view across cameras. However, WiFi provides a way
of identification through user-specific information, i.e., the
MAC address of the user’s smartphone, but the derived motion
trajectory is coarse grained and inaccurate. EyeFi exploits

https://github.com/munir01/EyeFi
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Fig. 1: An overview of EyeFi system architecture.
the properties of these two sensing modalities to fuse the
trajectories obtained from both for fast and accurate person
identification across time and space. The system primarily
consists of a camera and a WiFi sniffer. EyeFi does not require
installation of any apps or beacons on the users’ smartphone
and does not add additional overhead to the phone.

A high-level architecture of EyeFi is shown in Figure 1.
A surveillance camera with a WiFi chipset is installed at the
desired location and it overhears WiFi packets of intended
subjects like shoppers. Smartphones generate WiFi packets
after connecting to the local WiFi access point. When a smart-
phone is not connected to an access point, it still generates
WiFi packets to discover nearby access points. These packets
are captured by EyeFi along with CSI information, which is
used to estimate AoA of the WiFi source. However, since the
estimated AoAs are very noisy, they are further processed to
smooth the motion trajectory. Meanwhile, the camera reports
the locations of detected human subjects (which may contain
more/less people than the number of smartphones that the
WiFi unit has detected) and their motion trajectories. Both
the trajectories from the camera and the WiFi are sent to
the trajectory matching module that identifies people using
WiFi MAC addresses by performing cross modal trajectory
matching.

B. Motivational Experiments

EyeFi is motivated by the poor performance of existing
person identification solutions. For example, a possible alter-
native to EyeFi is to use a camera-based solution that uses
facial recognition to track people across time and locations.
However, cameras installed in public places like a retail
store can barely see the faces of the customers. In order to
understand the performance of a camera-based system, we
apply a facial recognition algorithm on a video feed that we
collected during our empirical study.

Figure 2 shows a frame from our video feed which contains
eight human subjects highlighted using red rectangular boxes.
We use a Python-based facial recognition software [1] to detect
faces in this frame. The result is catastrophic. The software
detects 0 faces after running the algorithm on the entire video.
This is because as we can see in the example video frame, a
human subject can be facing away from the camera and his
dress and floor color can be very similar – which poses an
additional challenges to object recognition and matching in a
purely vision based domain. Also, existing pre-trained vision-
based models do not work well with panoramic images.

To complement the vision-based system, one can add WiFi-
based localization to the system by running the SpotFi [12]
algorithm on the collected CSI data. However, based on our
experiments, the Matlab implementation [3] of the SpotFi

Fig. 2: Facial recognition software can not recognize any of the
8 human subjects present in the view. All figures best viewed in
color.
algorithm (provided by the authors) requires around 1.5 - 2
seconds to generate AoA estimation for a single WiFi packet.
For 8 hours of continuous WiFi stream at the data rate of
20 packets per second, the total number of WiFi packets is
576, 000. With 1.5 seconds computation time for each packet,
the AoA estimation requires 240 hours. Even though the
computation time can be reduced by using a more efficient
implementation, the computation time will still be too long to
be viable for processing a large number of WiFi data points for
the intended application. Based on these initial experiments,
we develop EyeFi to overcome these limitations and to achieve
a faster, accurate, and practical solution that works in real-life
scenarios.

V. ALGORITHM
EyeFi is a modular system that combines information from

visual domain with RF domain. For camera based person
detection, tracking, and trajectory estimation, EyeFi uses the
proprietary software that comes with Bosch Flexidome IP
Panoramic 7000 camera. Our evaluation shows that the exist-
ing firmware of the camera can estimate AoA of individuals
with an average of 1.03 degree error. EyeFi is agnostic of
underlying computer vision technique of person detection and
tracking as long as the accuracy is similar. So, we focus on
WiFi based AoA estimation, trajectory smoothing, and cross
modal trajectory matching. However, we use the camera based
location information to improve accuracy and execution speed
of WiFi based AoA estimation. In this section, we describe
each of these components in detail.

A. Camera Assisted WiFi Based AoA Estimation

WiFi communication produces Channel State Information
(CSI) which can be used to estimate the Angle of Arrival
(AoA) of the incoming WiFi signals. Methods like SpotFi [12]
extend computationally expensive MUSIC algorithm which
uses linear algebra to decompose and estimate AoA. However,
from our experiments, the SpotFi algorithm is evidently slow
and does not work well in large AoA scenarios (e.g., 60◦-
90◦). Examples are given in Section VII-B.

To reduce the computation time and to improve overall
AoA estimation performance in order to be viable for EyeFi,
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we seek a data-driven machine learning-based approach to
estimate AoA from CSI data. To that end, we try different
neural network architectures and after observing similar per-
formance of multiple complex networks, we choose a fully
connected neural network that takes CSI data as input and
regresses the AoA values (shown in Figure 3) as it performs
equally well. For the CSI data, there are 90 complex numbers
for each packet, which correspond to 30 subcarriers from
3 antennas. We format these 90 complex numbers into a
vector of 180 numbers which represent the real and imaginary
parts. The neural network has 6 hidden layers in addition to
the input and output layer. For the activation function, we
use Leaky ReLU [15] for improved performance [29] and to
accommodate the negative value of the imaginary part:

y =

{
x, if x ≥ 0

slope× x, otherwise
(1)

We also use dropout [23] to reduce overfitting. We use L1
loss function and Adam optimizer for training.

For training the neural network, we take inspiration from
knowledge distillation, more specifically, the teacher-student
model where the student network learns from the soft labels
of a teacher model [6]. We treat the SpotFi [12] algorithm
as the teacher model for the training purpose. Even though
the goal of our neural network is to regress AoA using
CSI and we provide hard label of AoA from camera as
ground truth, forcing the network to regress the AoAs of
the SpotFi, which are the soft labels in our case, in addition
helps to ensure the network is forced to learn multipaths as
accurately as the teacher model (SpotFi) and hence has a better
chance of generalizing to a different environment. As shown
in Figure 3, the output of the network is a vector of size
five as the network regresses to one AoA from camera and
four multipaths from SpotFi. We test our hypothesis regarding
the need for a teacher-student model and find that such a
model helps to improve AoA estimation accuracy and helps
with generalization in a different environment as described in
Section VII-B.

B. WiFi based Trajectory Smoothing

The estimated AoA from CSI data is noisy – which we
can see from Figure 4, where both the estimations from
SpotFi and our neural network generated ones show similar
characteristics. Such noisy characteristic can be caused by

sensor measurement noises, body-shadows, and multi-path
effects. Even in a controlled environment, the noisy situation
improves but is not eliminated. To address this issue, we
smooth the data to better align with the ground truth.

Typically smoothing is based on the idea that noise has a
certain distribution and added to the underlying real data. For
such data, employing moving average usually achieves a good
result. However, the data from the AoA estimation does not
show such a distribution. Applying moving average in our time
series data causes the result to bias towards the noisy direction.
An example of applying moving average algorithm on the data
from Figure 4(b) is shown in Figure 5(a). We can see that the
smoothed results are biased toward the noisy direction.

For non-parametric based methods such as Locally
Weighted Scatterplot Smoothing (LOWESS) can produce bet-
ter results in some cases as it does not assume the data fits
some specific distribution. However, in our case, the AoA data
can become extremely noisy such as around packet number
200 - 250. These abrupt fluctuations can severely distort
the smoothed result as shown in Figure 5(c) after applying
LOWESS. Even though it improves over the moving average
approach, it is still too noisy to match with a camera based
trajectory.

To achieve the best possible smoothing, we develop a two-
stage smoothing pipeline. The first stage addresses the noise
causing abrupt fluctuations. We define a smoothing window
of length N with the targeted smoothing data point xt ∈ X
at the middle point, where X is a set of all the N data points
within the window. The variance of all the data points in the
smoothing window is calculated:

σ2
X =

1

N

N∑
i=1

(xi − µX)2 (2)

we then calculate the variance without the targeted data
point:

σ2
X̂

=
1

N

N∑
i=1,i6=t

(xi − µX̂)2 (3)

If the difference between the two variances δ = σ2
X − σ2

X̂
is larger than a threshold λ (we set to 1), we treat the target
data point as an abrupt noise and replace it with:

xt =

{
µXbiased

, if σ2
X > λvar

µX , otherwise
(4)

The σ2
X and λvar are variance of the smoothing window and

a threshold (set to 300) to determine if this smoothing window
is a volatile region. Our empirical study shows that as the
neural network learns the multipaths of SpotFi, the estimated
AoAs have larger variances when the phone is within larger
AoA ranges. Example of such areas can be seen in Figure 4(b)
packet 150-225 and 325-375. As they are in the large AoA
range, the noise can be large and toward the opposite direction.
As a result, we use µXbiased

to replace the targeted data point
when σ2

X > λvar is met. Xbiased is determined as follows:

Xbiased :=

{
{x ∈ X : x ≥ Xmedian}, Xmedian ≥ 0

{x ∈ X : x < Xmedian}, Xmedian < 0
(5)
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The Xmedian is the median value of X (considering all
N AoA values) in that smoothing window. Expression {x ∈
X : x ≥ Xmedian} means elements in X that are larger than
their median value. µXbiased

is the average of Xbiased from
Equation 5. For the second case of Equation 4, µX is the
sample mean of all the AoA data points in the smoothing
window. Figure 5(b) shows the result of the variance-based
smoothing performance over the first AoA (i.e., the first
element of the output vector) generated by the neural network.
As we can see from the figure, the noises causing abrupt
fluctuations are largely addressed. For the second stage of
smoothing, we apply LOWESS to the smoothed data and the
results are shown in Figure 5(d). The mean and median values
of the absolute differences between the smoothed AoA data
and camera generated ground truth AoA of all the figures in
Figure 5 are shown in Table I. It shows that applying LOWESS
after variance based smoothing significantly reduces the mean
and median error of AoA estimation. We perform a detailed
evaluation in Section VII-C.

Moving
Average

Variance
based LOWESS Variance based

+ LOWESS
Mean (◦) 19.45 12.39 22.77 10.14

Median (◦) 15.47 8.33 10.93 6.40

TABLE I: Mean and Median error of AoA estimation after
applying different smoothing algorithms on the example data
shown in Figure 5

C. Identification Through Trajectory Matching

To identify individuals, EyeFi performs a cross-modal tra-
jectory matching. The simplest approach is to apply Euclidean
distance between two trajectories to find the shortest distance,

dj,k =

√√√√ N∑
i=1

(Ti,j −Ti,k )2 (6)

where Ti,j and Ti,k are the AoA trajectories for subject j
(computed using camera) and k (computed using WiFi CSI),
respectively from a window of size N . By ranking the dj,k
we can find the matched one with the shortest distance.

If each subject walks differently, Euclidean distance could
be enough to identify subjects as long as the AoA estimation
from each sensing modality is accurate. However, to identify
subjects that have a similar path, we also take into considera-
tion of the rate of the change in AoA trajectories. Specifically,
we use polynomial functions to represent the trajectories and
match with the desired subject. For a matching window of size
N , we have can represent the segment with:

y = a · x3 + b · x2 + c · x+ d (7)

where x ∈ X[1, N ]. The polynomial fitting problem is
also a smoothing operation, where small noises are filtered
out. The estimated y data points are used for calculating the
Euclidean distance between the trajectories from WiFi and
camera after fitting polynomials. Also, instead of using the
standard Euclidean distance function, we apply weights to each
AoA data point. Using the polynomial function, we can find
the rate of change at every data point Ri. Then, we calculate
the absolute rate of change of differences R̂i = |Ri,j −Ri,k |
for each pair of trajectories. Then the weighted distance is
calculated as follows.

ˆdj,k =

√√√√ N∑
i=1

(Ti,j −Ti,k )2 ⊗ R̂i (8)

Here, the operator ⊗ represents element-wise multiplica-
tion. We only apply weighted Euclidean distance to smaller
windows (less than 200 packets) as using it for larger match-
ing windows will smooth out sharp trajectory changes that
will deteriorate the performance of the matching. For larger



matching windows, the standard Euclidean distance is used as
it provides good performance and less computation overhead.

VI. DATA COLLECTION

A. Hardware and Software Setup

In this work, we use Bosch Flexidome IP Panoramic 7000
camera to collect vision data and Intel 5300 WiFi Network
Interface Card (NIC) installed in an Intel NUC to collect
WiFi data. The camera is mounted on a ceiling at a height
of 2.85 meters whereas the WiFi card is located at the
same location as the camera but at a height of 1.12 meters
forming a unified coordinate system. We collect data in two
different locations as shown in Figure 6. Figure 6(a) shows
the lab area where the majority of the data are collected, and
Figure 6(b) shows the Kitchen area where the collected data
are used for testing only (not used for training). The lab area
is rectangular having dimensions of 11.8m x 8.74m and the
kitchen area is irregularly shaped with maximum distances of
19.74m and 14.24m between two walls. The kitchen also has
numerous obstacles and different materials that pose different
RF reflection characteristics. The change in the environment
creates a vastly different RF characteristic that is used to test
the robustness and generalizability of the system.

To collect WiFi data, we set up a Google Pixel 2 XL smart-
phone as an access point and connect the Intel 5300 NIC to
it for WiFi communication (both are shown in Figure 7). The
phone transmits 20-25 packets per second to the NUC. Such a
low packet transmission rate simulates realistic scenarios, e.g.,
apps in the phone are receiving notifications. We use Linux
CSI Tool [8] to record the CSI information from the Intel 5300
WiFi NIC on Intel NUC.

B. Collected Dataset

We collect data over multiple days and vary the number of
people present in the scene. In the end, we have transmitted
over 1.2 million WiFi packets and collected corresponding
CSI values of over 13 hours. We also have over 15 different
individuals holding the phone to capture various ways people
hold phones, their walking patterns, and different heights. In
addition to a single person walking in the scene, we also have
multiple people walking simultaneously.

VII. EVALUATION

A. Evaluation Setup

We evaluate how each component of our system performs.
We divide our dataset into different sets for this purpose.
Part of the data collected from the lab area is used for our
training and algorithm development. Data collected from the
kitchen area are only used for testing the robustness and
generalizability of the system. To identify the subject with the
phone and test the accuracy of identification, we use the data
from our camera system as ground truth. The camera detects
individuals and provides the (x, y) coordinates of each of the
detected subject, which is used to estimate AoA.

We first evaluate the accuracy of the camera in terms of its
ability to estimate (x,y) coordinates and AoA by standing in

(a) Lab area. (b) Kitchen area.
Fig. 6: Data collection environment seen from panoramic cam-
eras. (a) lab area which is large and rectangular shaped, (b)
kitchen area which is irregular and has many obstacles. An Intel
NUC is located at the middle of each figure forming a unified
co-ordinate system of the camera and NUC.

Fig. 7: Data collection equipment. On the right (yellow box) is
the Intel NUC with Intel 5300 WiFi card installed with three
external antennas. On the left (red box) is the Google Pixel 2 XL
phone for communication. Note that all the data are collected
while a subject is holding the phone in his/her hand.

16 different locations throughout the lab and comparing the
differences between the camera and our actual measurements.
We find that the average error of the camera is (0.32, 0.29)
meters for estimating (x,y) coordinates and 1.03 degree for
AoA. It shows that we can use the location data from the
camera system as ground truth for the training and testing.

B. Neural Network Based AoA Prediction

1) Training Data: As discussed in Section V-A, our training
data consists of SpotFi generated AoAs and camera generated
ground truth AoA. To prepare the dataset, we need to address
the phase offsets between the 3 RF chains in the Intel 5300
NIC. [31] states that the phase offsets between these chains
are deterministic and the offset between two RF chains only
poses two possible values. We determine the two values based
on our own measurements using methods stated in [31].

During the data collection, it is impractical to measure the
phase offsets each time the system reboots. To address this
issue, we apply all possible (four) combinations of the phase
offset when calculating AoAs using the SpotFi algorithm.
Once all the SpotFi AoA data are generated, we find the
correct phase offset by choosing the one with the smallest
mean absolution difference between the AoA from SpotFi and
AoA from the camera. Then, we use the SpotFi data with
correct phase offsets calibrated to train our neural network
models.
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(a) Result in Lab area.
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(b) Result in Kitchen area.
Fig. 8: Neural network performance for different size of training
dataset.

2) Neural Network Models: For the AoA estimation, we
train our neural network models with different outputs to
evaluate the performance of the teacher-student model and
whether the neural network can learn the SpotFi algorithm.
We train three different neural network models: SpotFi Only
NN that uses SpotFi generated AoA results for training, SpotFi
+ Camera NN that is our teacher-student model, and Camera
Only NN that uses only the camera generated ground truth
AoA for training. All the neural network models are trained
with the same training dataset with roughly 400,000 WiFi-
camera AoA pairs.

To evaluate how the number of training samples affect the
neural network performance, we train our SpotFi + Camera
NN teacher-student model with different size of the training
dataset, and test the performance of the neural network on
the validation dataset (roughly 58,000 WiFi-camera AoA pairs
from the lab) and a subset of the data collected in the Kitchen
area (roughly 22,000 WiFi-camera pairs). The results are
shown in Figure 8. The X-axis is the percentage of the dataset
(roughly 400,000 WiFi-camera AoA pairs) used to train the
neural network and Y-axis is the absolute difference between
the neural network prediction and ground truth AoA. We report
mean, median and standard deviation of the difference here. In
Figure 8(a), we see that the performance of the neural network
on the validation dataset improves as the size of the training
dataset increases. The same trend are also being observed with
the Kitchen area dataset. The improvements become minimal
after 80% of the dataset is being used for training. It shows
that our training dataset is large enough to train our neural
network model.

We also test if our epoch is large enough to complete the
training of the network for improving the AoA estimation by
calculating the mean and median AoA difference after each
epoch with both the datasets from lab and the kitchen. The
results are shown in Figure 9. As we can see, the performance
improvements level out when the number of epochs is larger
than 75. The similarity between Figure 9(a) and Figure 9(b)
shows that our neural network model generalizes to a differ-
ence environment as it learns.

We test all three models on an unseen test dataset. Table II
shows the mean and median of the absolute AoA difference
between the predicted one and ground truth for the neural
network models and SpotFi. From the table, we see similar
performance between the SpotFi algorithm and the SpotFi Only
NN that demonstrates that the neural network can learn the
SpotFi algorithm. Camera Only NN and SpotFi + Camera
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Fig. 9: Neural network performance during training.

Lab Kitchen
Mean (◦) Median (◦) Mean (◦) Median (◦)

SpotFi 59.17 58.08 50.14 44.03
SpotFi Only NN 62.97 63.29 45.55 46.01
Camera only NN 31.87 14.57 36.61 20.63

SpotFi + Camera NN 30.56 13.98 35.08 18.72

TABLE II: Mean and Median on AoA estimation performance
of different neural network models and SpotFi on data collected
from lab and kitchen area.

NN both show improved performance over SpotFi and SpotFi
Only NN, and our teacher-student model SpotFi + Camera
NN shows the best performance. The neural network learns
the underlying relationship between the CSI and AoA, and the
teacher-student model further improves the generalizability of
the neural network on different test cases and environments.

3) Robustness and Efficiency of AoA Estimation Neural
Network: We test the robustness of our teacher-student neural
network model on both unseen CSI data collected in the lab
and kitchen area using over 30,000 and 20,000 WiFi packets,
respectively. The results are shown in Table II. It shows that
the performance of the neural network is comparable across
different environments and shows better results than SpotFi.
The difference between the SpotFi results in two environments
can be because of different environment RF characteristics
and percentage of the phone in different AoA range (SpotFi
performs worse in large AoA range).

In addition to the performance improvement on the AoA
estimation, the neural network also improves the execution
speed. SpotFi takes around 1.5 seconds to estimate AoA per
WiFi packet, thus making it difficult to be useful in a real-time
solution. Based on using 22,854 WiFi packets collected from
the kitchen, we see that our neural network is around 3809
times faster than SpotFi, which can be further improved using
GPU computation and batch data, enabling EyeFi a real-time
solution.

C. Smoothing

We use the kitchen data (different environment from the
training) from the previous subsection to evaluate the perfor-
mance of our smoothing algorithm. We measure the mean and
median absolute errors between the smoothed AoA data and
camera derived ground truth AoA data. The results are shown
in Table III. In this table, NN is the AoA estimation from
our neural network model, Variance Based is the results after
our first stage smoothing, Variance + LOWESS is our full
smoothing stack, and we also report the result by only applying
the LOWESS algorithm in LOWESS. From this table, we can



see that smoothing improves on the original neural network
generated AoA estimation. Our smoothing stack produces the
best results with both lowest mean and median absolute errors.

NN Variance
Based

Variance
+ LOWESS LOWESS

Mean (◦) 24.61 12.98 10.80 12.17
Median (◦) 11.76 9.59 7.91 8.09

TABLE III: Smoothing performance with different smoothing
techniques and combinations.

The results from LOWESS based smoothing is better than
our variance based smoothing in Table III. This is different
from the results presented in Table I which is the statistics for
Figure 5. This is because in Figure 5, we choose a segment
of the data where the neural network introduced more noise
and the ground truth is in the large AoA range.

D. Identification

To evaluate the performance of identification, we collect
datasets with multiple people walking in the scene simulta-
neously. The results are reported in Figure 10. We consider
SpotFi as our baseline. It uses AoA data generated by the
SpotFi algorithm and identifies the subject through Euclidean
distance. EyeFi uses weighted Euclidean distance for identi-
fication on the two staged smoothed data generated by the
teacher-student neural network. As stated in Section V-C, we
only apply our weighted distance for the sequence size of
fewer than 200 packets. The accuracy is calculated by sliding
a window of size N along the time-series data, identify the
subject with the AoA data within the window range, then com-
puting the percentage of the number of accurately identified
time-segments throughout the test dataset. The window size
starts at 5, which means using only 5 packets. For example,
in Figure 10(a), we can successfully identify the subject 90%
of the time in a normal 2 people scenario. Since we collect
data at a rate of 20-25 packets per second, 5 packets represent
a duration of 0.25s or less. As more people are present in the
scene, the difficulty of identification increases. As shown in
Figure 10(b), the accuracy is worse than the 2 people case.
The performance further drops with 5 people in the scene as
shown in Figure 10(c).

Figure 10(d) shows the result of identification with 10
people walking simultaneously. The results show that EyeFi
can still identify even though the accuracy drops in smaller
windows. The identification accuracy of 10 people is a bit
higher than that of 5 people when the window size is 500.
This can be due to the human subject who is holding the phone
walks in a different path than the rest of the group. This allows
the identification can be 100% accurate when the window size
is large. However, in real situations, 500 packets span about
25 seconds during our data collection. With an average human
walking speed of 1.1 meters per second, a person can walk
about 27.5 meters during that time frame. Given the number
of packets large enough and the path is different enough to
be distinguished from other trajectories, EyeFi could achieve
near 100% accuracy in identification.
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Fig. 10: Identification accuracy for different number of people.

VIII. DISCUSSION

A. Limitations of Our Proposed Solution

There are two major limitations of EyeFi. First, it requires
having a smartphone with WiFi communication. Second, it
is unable to identify if multiple people walking together in
a way that results in similar AoA trajectories. For the first
limitation, the usage of the phone is very common but not all
users will connect to public WiFi such as the ones provided by
the store in our case. However, EyeFi can still receive WiFi
packets generated by phones while discovering local access
points. This property allows the system to estimate AoA and
track the subject. However, if the WiFi interface is disabled or
the smartphone is not generating any WiFi traffic, then EyeFi
will not be able to identify people. But the camera can still
provide analytics on behavior of people to some extent. For
the second limitation, in retail stores, if the trajectories are the
same for a few people, identifying either could provide the
same analytic regarding customer behavior.

B. Motion Across Multiple Cameras

In areas where multiple cameras are deployed with or
without shared field of view, EyeFi can leverage existing
camera-based re-identification algorithm [33] to identify the
same user across multiple cameras to provide full trajectory
in the covered area. By leveraging WiFi, EyeFi can enable
identification at different spatio-temporal segments, thus re-
ducing the search space for the vision based identification and
enable more accurate long-term re-identification.

C. Generalization to Multiple Phones

The presence of multiple phones in the scene will have
minimal effect on the performance of the system. This is due
to the nature of WiFi communication that enables multiple
devices to talk to each other without interference. This also
means that the CSI information collected at the WiFi unit
for each device has the same quality. EyeFi only relies on
CSI information and does not require a high transmission rate
which further reduces the impact of multiple devices. During



our data collection, all other WiFi devices and communications
are functioning normally and no effects are observed.

D. Effects of Using Phones

Differs from most previous works that use Intel 5300 NIC
for both communication devices, we use a smartphone at one
end. The internal antenna design is vastly different from the
external antenna used with Intel 5300 NIC devices and the
holding of the phone by a human subject also affects the
WiFi signal quality. During our experiments, we also observe
poor performance and stability issues in AoA estimation
with phones in comparison to Intel 5300 NIC with external
antennas, and the AoA results are worse than that is reported
in previous works such as [12]. Note that Linux CSI Tool [8]
offers the best performance and stability using injection mode,
which is currently unavailable with the phone.

E. Effects of Environment

In our evaluation, we test EyeFi in two different envi-
ronments that shows stable performance among them. This
demonstrates the robustness and generalizability of our system.
However, different environments can affect the performance of
WiFi AoA estimation if the environment is very crowded with
obstacles between the phone and WiFi access point to create a
non-line-of-sight situation. In such a situation, the WiFi signal
is distorted which degrades the AoA estimation performance.
However, if the trajectories between different subjects in the
scene are different from each other, the system should be able
to identify. In our experiment, there are times where the phone
is blocked by human bodies which distort the WiFi signal as
well. With our smoothing pipeline, the identification can still
perform well.

F. Privacy Issues

Privacy is a major concern nowadays and we design EyeFi
with that in mind. Current camera-based systems mostly
use facial recognition for user re-identification across time.
However, facial recognition is unreliable in many settings
(discussed earlier) and can be racial biased. There are also
laws [2] to ban facial recognition to prevent such bias and
protect privacy. In contrast to vision-based facial recognition
systems to track a user across time, EyeFi only collects
the MAC address of the phone and hashes that to obtain a
consistent identification marker. Given most human subjects do
not change phones very frequently, the hashed MAC address
can be used as a reliable marker across time. As EyeFi does not
keep the link between a hashed MAC address and its particular
user, even if the hashed MAC addresses are compromised, it
will be very difficult to use that to identify a particular user.

IX. RELATED WORK

A. WiFi CSI AoA Estimation

WiFi CSI based AoA estimation has been explored in many
works. [12] exploits CSI values of WiFi subcarriers to extend
the number of virtual antenna for obtaining AoA of the direct
path along with several strong multipaths. They cluster AoAs

of multipaths from multiple packets and choose AoA of direct
path based on cluster quality. To localize a subject their
work relies on triangulation from multiple APs. [24] propose
an algorithm for sub-nanosecond time-of-flight calculation,
from which they localize a subject with one AP. [25] use
frequency domain super-resolution algorithms to overcome the
bandwidth limitation of WiFi for precise localization. [27]
extracts subcarriers less prone to multipaths and uses them
to estimate AoA. [22] proposes to use multipath reflections
to triangulate the subject instead of using multiple APs. [21],
[28] uses fingerprinting to map WiFi physical layer properties
for localization. [20] studies human movement’s effect on
WiFi CSI based AoA estimation. [7] proposes phased signal
processing for localization using triangulation that requires
coordination of nodes for precise localization. [32], [34] pro-
pose CSI based fingerprinting techniques for AoA estimation.
Differs from previous works, our system utilizes a data-driven
model that results in fast computation that enables real-time
application scenarios.

B. Multi-Modal Localization

Recent works have proposed multi-modal localization sys-
tems. [5] uses mobile phone sensors to associate a person
visual information. The idea is to match a person’s move-
ment signature between these two modalities and use this
signature as MAC address for enabling the public server to
send messages to the particular person. [4] proposes to use
WiFi RSSI strength as an indication to depth information of
the user. They use that depth information in association with
RGB image from the camera to localize a person. [17] uses
extended Kalman filter with accelerometer and WiFi RSSI as
input for tracking people in a dynamic environment. This work
relies on a pre-computed WiFi signal strength map for an
environment. [30] uses a particle filter to integrate vision and
radio localization system for sub-meter localization accuracy.
In [18], [11], the fusion of vision and RF is done for different
applications, e.g., fall detection, recalibration, and industrial
workspaces. However, these solutions require the deployment
of multiple cameras and/or RF units and none uses CSI
information.

C. Identification

One of the main motivations behind EyeFi is the ability
to identify human subjects across time. ID-Match [13] uses
RFID tags and a 3D depth camera to identify and assign
IDs to each person. RFID and BLE are used in [14] to
identify individuals. These works require additional sensors or
devices on the human subject which is inconvenient and can
be potentially costly. The use of additional tags also presents
difficulties when trying to tack the same subject across time
as they can be easily misplaced or forget to carry. For vision
based systems such as [26] which uses human motion pattern
and color of clothing. However, such systems do not work
with panoramic cameras that we are using. FORK [16] uses a
depth sensor mounted above a doorway for person detection
and identification based on the body shape of individuals.



However, such an approach does not scale across thousands
of people.

X. CONCLUSION

In this work, we propose EyeFi, a multimodal system
that fuses WiFi and camera data to identify individuals by
capturing motion trajectories from each modality. We design a
teacher-student based neural network model to estimate AoA
accurately, which speeds up AoA estimation by over 3800
times with 30% higher accuracy, enabling EyeFi to be a real-
time system. We test the performance in two different envi-
ronments and find the neural network based AoA estimation
is robust to a change of the environment. When evaluating
the accuracy of person identification, we see that EyeFi can
achieve an average of 75% accuracy across all number of
packets in a 2 to 10 people scenario. For future works, we
will improve performance for each component and build an
end-to-end system that can identify people in real-time.
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