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ABSTRACT
Thermal comfort is a decisive factor for the well-being, produc-
tivity, and overall satisfaction of commercial building occupants.
Many commercial building automation systems either use a fixed
zone-wide temperature set-point for all occupants or they rely on
extensive sensor deployments with frequent online interaction with
occupants. This results in inadequate comfort levels or significant
training effort from users, respectively. However, the increasing
ubiquity of cheap, depth-based occupancy tracking systems has
enabled an improvement in inferential capabilities. We propose
the novel system OccuTherm to model thermal comfort of occu-
pants. We conducted a laboratory study with 77 participants to
collect data for the implementation of a thermal comfort model
that derives thermal comfort using the human body shape. Based
on the comparison with model baselines and ablations, we show
that our approach infers thermal comfort of individuals with 60 %
accuracy when body shape information is taken into account; 6 %
more than state-of-the-art approaches. We make our code, mobile
app, datasets, and models freely available.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Model de-
velopment and analysis; • Computer systems organization →
Embedded and cyber-physical systems; • Human-centered com-
puting;

KEYWORDS
Thermal Comfort, Human Studies, Machine Learning

∗Equal contribution.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BuildSys ’19, November 13–14, 2019, New York, NY, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7005-9/19/11. . . $15.00
https://doi.org/10.1145/3360322.3360858

ACM Reference Format:
Jonathan Francis, Matias Quintana, Nadine von Frankenberg, SirajumMunir,
and Mario Bergés. 2019. OccuTherm: Occupant Thermal Comfort Inference
using Body Shape Information. In The 6th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys
’19), November 13–14, 2019, New York, NY, USA. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3360322.3360858

1 INTRODUCTION
Thermal comfort is an important factor in building control. It drives
the operation of heating, ventilation, and air conditioning (HVAC)
systems, which are estimated to account for 50 % of the total en-
ergy use in the built environment. Moreover, thermal comfort has
a significant effect on the physiological and psychological well-
being of an individual and affects occupants’ health, satisfaction,
and performance [4, 9]. Studies have shown that it can lead to
either an increase in concentration and productivity in optimal
comfort conditions or to lethargy and distraction in poor comfort
conditions [5, 11]. Many commercial building control systems in
use are based on models that regulate thermal conditions, often by
means of pre-defined rules with pre-defined set-points, i.e., the goal
temperature in an indoor environment. Temperature set-points are
either derived from well-established standards, such as ASHRAE
55 [1], or require continuous feedback from occupants by means of
surveys or wearables. Few building control systems prioritize the
occupants’ inherent physical characteristics, e.g., body shape in-
formation (height, weight, shoulder circumference), when making
these thermal comfort estimates. The sophistication of non-invasive
sensing and privacy preserving occupancy-tracking systems has
improved greatly in the last decade, making occupant tracking
and occupant parameter estimation more ubiquitous [21, 31]. Ther-
mal comfort prediction, on the other hand, remains a fundamental
challenge in this domain, due to the stochasticity of the environ-
ment, the non-stationarity of human thermal comfort preferences,
and the prohibitive cost of performing large-scale thermal comfort
data-collection.

In this work, we propose theOccuTherm systemwhich is used for
predicting thermal comfort preferences of occupants by leveraging
their body shape information. Our approach improves the accuracy
of thermal comfort predictions, alleviates the need for frequent oc-
cupant comfort feedback during system deployment, and leverages
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data from existing commercial building sensing infrastructures. The
contributions of this work are the following. First, we perform a
human study experiment where we collected data from 77 partic-
ipants during three-hour sessions, each over the course of a year.
Second, we develop a model to infer thermal comfort of individuals
using body shape information. To the best of our knowledge, no
such model exists and hence it is a novel approach to infer thermal
comfort of individuals. Third, in order to emphasize the increased
inferential power that body shape information offers to comfort
modeling, we compare our model with other instances of the same
hyperparameter configuration that are trained only on an ablated
set of feature inputs. Models trained with body shape information
perform better than their fewer-feature counterparts, by 6%. Finally,
we configure our model for temperature set-point prediction and
show that our strategy performs proximally to state-of-the-art tech-
niques. Our code, mobile app, datasets, and models are available
here: https://github.com/jonfranc/occutherm.

2 RELATEDWORK
Thermal comfort has a considerable influence on the overall sat-
isfaction in indoor environments [5, 11]. Many building control
systems rely on generic thermal comfort models for temperature
regulation that average the air temperature to achieve thermal com-
fort among building occupants. The most widely used models are
the Predicted Mean Vote model (PMV) [8], the Pierce Two-Node
Model (PTNM) [12], and the RP-884 model [6]. The PMV and the
PTNM models were introduced in the 1970s; the basis of both mod-
els are laboratory studies that take physiological parameters as
well as environmental data into account [8, 12]. This data includes
air temperature, mean radiant temperature, relative humidity, and
air velocity, and, as for human factors, clothing insulation and
metabolic rate. All three mentioned models consider human factors,
rather than using specific set-points, but they average the individual
occupants’ responses.

Recent literature employs machine learning in order to contextu-
alize environmental data by means of supervised comfort modeling
[3, 5]. In a study with 38 participants, Kim et al. [22] show that per-
sonalized thermal comfort models perform better than conventional
models, such as the PMV, due to the increased model representa-
tional capacity. The evaluation in [3] assesses whether or not ther-
mal comfort can be determined by sensor data and environmental
variables, and the authors show promising results in personalized
models, with an average of 83 % across their 7 participants. Their
results are compared against an always-comfortable model as well
as a linear regression model that only uses temperature as input.
However, generalizability is hard to conclude given these cohort
sizes, whose data may not capture the non-stationary properties
of human comfort preference as well as ambient environmental
phenomena [7, 26, 32]. Moreover, these approaches do not address
the role of body shape information (e.g., height, weight, and shoulder
circumference) in the thermal comfort predictions.

Similar attempts that promote personalized comfort models also
include occupant feedback, human factors, and bio-signal data (e.g.,
heart rate, skin temperature, and galvanic skin response) [28, 36].
Another approach proposes to use body features that are identified
through video and shows that the human thermoregulation state

Table 1: Thermal comfort index, discretized thermal com-
fort label on 5-point scale, the number of responses in the
dataset for each tier for the 77 participant subset, and the
mapping to the ASHRAE thermal comfort scale.

Comfort Index Label Count ASHRAE

Uncomfortably Warm +2 48 CoolerSlightly Uncomfortably Warm +1 198

Comfortable 0 1152 No change

Slightly Uncomfortably Cold -1 452 WarmerUncomfortably Cold -2 217

can be inferred from the human skin [18]. On a similar basis, the
FORK system uses a depth sensor to detect, track, and estimate
occupancy in buildings [31]. In this paper, we extend the FORK
system to include physiological body shape information in order to
infer the individual’s thermal comfort preferences. Human physiol-
ogy implies that body shape does play an important part in thermal
comfort. An individual with a larger body surface offers a larger
area for sensing the temperature outside the body. Additionally, adi-
pose tissue has the effect of trapping heat, meaning that the human
core stays warm while the body surface, i.e., the skin, cools down.
To our knowledge, no other approach uses body shape information
to infer personalized thermal comfort.

Other approaches, such as SPOT [15] and SPOT+ [13], describe
occupancy sensing systems for thermal control; as a result, the
goal of these works is to generate a zone temperature set-point, as
opposed to comfort predictions. SPOT uses the Predicted Personal
Vote (PPV) model, which takes Fanger’s PMV [8] and adds a linear
function to include the individual’s sensitivity to the variables used
by the PMV. Gao and Keshav [13] show reductions in user discom-
fort, from 0.36 to 0.02, as compared to baselines. We compare our
approach to these works, while taking thermal comfort prediction
as an additional evaluation criterion for our system.

3 APPROACH
Our goal is to predict a commercial building occupant’s thermal
comfort, based on body shape information and relevant environ-
mental factors. Our system is composed of three modules, for: body
shape inference (Section 3.1), thermal comfort modeling (Section
3.3), and temperature set-point generation (Section 3.3.1). We specif-
ically consider occupant body shape information that can be eas-
ily estimated or regressed from depth-camera sensor data: height,
weight, and shoulder circumference.

When an occupant enters a room, their height, weight, and
shoulder circumference are obtained using a depth-based occu-
pancy tracking assembly, based on FORK [31]. Next, we combine
this body shape information with environmental sensor data from
the commercial Building Automation and Control Network (BACNet)
infrastructure on our campus. We then classify the occupant’s ther-
mal comfort preference, conditioned on the body shape information
and the environmental factors. Finally, from the set of comfort pre-
dictions, we infer the optimal zone temperature set-point range.

https://github.com/jonfranc/occutherm
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(a) (b) (c) (d)

Figure 1: A sample depth frame (a) and corresponding RGB image (b) of when someone going in and a sample depth frame (c)
and corresponding RGB image (d) of when the same person is coming out.

3.1 Determining Body Shape Information
The Fine-grained Occupancy estimatoR using Kinect (FORK) system
[31] uses a ceiling-mounted depth sensor to estimate the number
of occupants in a room. In order to identify and track humans
in the sensor’s field-of-view, FORK uses a model-based approach
which relies on the anthropometric properties of human heads and
shoulders. We use FORK’s human detection algorithm to determine
body shape information in OccuTherm. The reason we choose a
depth sensor for estimating body shape over an RGB camera is
that it is considerably less privacy-invasive: a depth sensor cannot
sense skin color, hair, cloth, and – since it is mounted overhead – it
cannot see facial features. Hence, it is difficult to identify individuals
using depth frames, even if the sensor is compromised. OccuTherm
performs all computation at the edge and does not upload any
image to any remote server. OccuTherm uses the Microsoft Kinect
V2, which provides depth frames at a 512x424 resolution (see Figure
1). In this section, we describe how OccuTherm estimates height
and shoulder circumference of occupants.

3.1.1 Determining Height. After FORK has detected a human head,
it fits a contour and a minimum enclosing circle around the head,
as shown in Figure 1(a). Among all the pixels within the circle,
OccuTherm finds the pixel Pmin = (px ,py) that has the minimum
depth valueDmin . Note that, since a depth sensor provides distance
to its nearest object in millimeters, Pmin is the pixel representing
the highest point on the head of the person. In order to estimate the
participant’s height, OccuTherm estimates floor height Fmax by
building a histogram of number of depth pixels at different distances
from the sensor, as in [31]. The bin with the highest number of
pixels is considered the floor. The height of the person is then
computed as Fmax − Dmin . Since a person is captured in multiple
frames while they are entering and exiting, we estimate the height
only when the person is directly underneath the sensor and ignore
the height estimation at the edges of the frame.

3.1.2 Determining Shoulder Circumference. Inspired by FORK [31],
OccuTherm determines shoulder circumference using anthropo-
metric properties of human bodies. FORK itself does not estimate
shoulder circumference, it merely detects the presence of a shoulder.
OccuTherm estimates shoulder circumference using the following
steps. First, we obtain the center of the head, using FORK. Next,
given that the end-to-end distance between two shoulders of a per-
son is approximately three times the diameter of head, OccuTherm
fits a region-of-interest (ROI) that includes the head and shoulder
and discards all pixels below a threshold Dmin + H + S , in order
to discard depth values below the shoulder level (see Figure 3(a)).
Next, OccuTherm captures the head by discarding all the depth

pixels below a threshold H , which is a bit less than the length of
an average human head (see Figure 3(b)). We choose H , S to 150
and 300 millimeters, respectively. Third, it subtracts the second
image from the first image to capture the shoulder (Figure 3(c)).
Fourth, it detects contours using the third image and fits an ellipse
to determine the circumference of the shoulder (Figure 3(d)). The
fitted ellipse is shown blue in the Figure. Figure 3 shows how it
captures shoulder circumference when someone is going in (Figures
(a), (b), (c) (d)), and when someone is coming out (Figures (e), (f),
(g), (h)). The circumference of the ellipse is used to estimate the
circumference of the shoulder. Note that the circumference of the
ellipse is in the pixel coordinate. In order to map it to real-world
shoulder circumference, the ellipse builds a linear-regression model,
using elliptical circumference as predictor to fit the training data.

This approach suffers when two shoulders get separated or when
one shoulder gets occluded, as shown in Figure 4. In order to ad-
dress these corner-cases, OccuTherm uses the following approach:
when both shoulders get separated, it reports the elliptical circum-
ference as (total sum of circumference of both ellipses)*3/2. When it
detects only one shoulder, it reports the elliptical circumference as
(ellipse circumference)*3/2. Then it uses the aforementioned linear-
regression model to estimate the real-world shoulder circumference
using elliptical circumference as predictor variable.

3.2 Data Collection
We mounted a Microsoft Kinect V2 depth sensor above the door,
inside a large conference room (Figure 5); next, we gained real-time
access to the conference room’s HVAC actuator state information
via BACNet; finally, we developed a mobile application that collects
occupant comfort surveys (Figure 6).

In this fully-controlled thermal chamber, we performed 77 indi-
vidual comfort experiments, approved by our Institutional Review
Board (IRB) and in satisfaction of participant consent guidelines.
Our goal was to generate a dataset than enables comprehensive
study of human thermal comfort preferences, in a commercial build-
ing environment, across a wide range of indoor environmental con-
ditions. Each comfort experiment lasted for 3.5 hours and began by
manually measuring the participant’s ground-truth body shape in-
formation; next, the participant was asked to pace in and out of the
room, beneath the depth camera, so that we could obtain accurate
body shape predictions. For the remaining 3 hours, the participant
was equipped with a wearable biometrics device1 and was provided
with a smartphone that had our thermal comfort mobile application
1While the Microsoft Band II wearable device was used in our experiments, any
wearable fitness tracker that produces such biometrics as Skin Temperature, Heart
Rate, and Galvanic Skin Response may be used to replicate our results.



BuildSys ’19, November 13–14, 2019, New York, NY, USA Francis andQuintana, et al.

Figure 2: Plots of Comfort versus Temperature, for a subset of the thermal comfort human study participants (#60-#68).

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3: Shoulder circumference estimation, when: user is entering, (a)-(d); user is exiting, (e)-(h).

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4: Shoulder circumference estimation cases: separated shoulders, (a)-(d); one shoulder is occluded, (e)-(h).

Table 2: Participant Population Statistics for the 77 filtered participants in the OccuTherm dataset.

Feature Min Max Mean Standard Deviation

Zone Temperature 60.1°F (15.6°C) 85.0°F (29.4°C) 71.4°F (21.9°C) 6.22°F (3.5 °C)
Outdoor Temperature 6.8°F (-14.0°C) 91.4°F (33.0°C) 49.6°F (9.8°C) 20.9°F (9.8°C)
Skin Temperature 71.96°F (22.2°C) 95.0°F (35.0°C) 85.1°F (29.5°C) 4.0°F (2.2°C)

Outdoor Rel. Humidity 33.5% 100% 69.5% 13.2%
Shoulder Circumference 89.5 cm 133 cm 109.3 cm 10.9 cm

Height 151.0 cm 191.2 cm 170.1 cm 9.7 cm
Weight 90 lbs (40.82 kgs) 236.6 lbs (107.32 kgs) 153.0 lbs (69.4 kgs) 30.8 lbs (13.98 kgs)

Clothing Insulation (clo) 0.25 1.15 0.57 0.19
* Self-reported participant Gender was obtained as an additional feature: 34 males and 43 females.

pre-installed: the participant was instructed to engage in a low-
intensity activity of their choice (e.g., reading), while completing
quick thermal comfort surveys in the mobile application (Figure 6).
Concurrently, we fixed the airflow rate in the room and varied the
zone temperature via BACNet, between approximately 60°F to 80°F
(16°C to 27°C), according to a cold-hot-cold-hot control schedule.

The participant completed a thermal comfort survey every five
minutes or whenever they initiated a change in their clothing level
(e.g., adding or removing a sweater) or activity type. Participants
provided their comfort votes on the basis of a reduced 5-point
ASHRAE 55 scale [1], see Table 1, which we used in order to reduce

the complexity of voting. The use of seven-point scales generally
improves reliability, however, in a setting where participants are
polled in a frequent interval, less steps to perform the task increases
the efficacy of the responses [2, 34]. In our study, the main objective
was to determine the participant’s thermal comfort, which is, ac-
cording to ASHRAE, mapped to “warmer”, “cooler”, or “no change”.
However, we were also interested in whether the participant felt
“uncomfortably” or “slightly” warm or cold, as this gives important
meta-information for the relevance of a change in temperature
for the specific individual. Our scale can be mapped to ASHRAE’s
thermal comfort scale as follows: “slightly uncomfortably cold” and
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Figure 5: Deployment of a Microsoft Kinect for depth data-
collection highlighted by a blue square.

Figure 6: User interface of the mobile application that was
used during the thermal comfort experiment.

“uncomfortably cold” to “warmer”, “comfortable” to “no change”,
and “slightly uncomfortably warm” and “uncomfortably warm” to
“cooler”. We did not include ASHRAE’s thermal sensation scale as
it merely indicates the subject’s current sensation, but not comfort,
which is the most important factor in our case. Our thermal com-
fort index information is summarized in Table 1, human subjects
population statistics are summarized in Table 2, and sample plots
of participant comfort versus temperature are shown in Figure 2.

During each experiment, we sampled Zone Air Temperature
in 30-second intervals, and we sampled Set Point Temperature
and Air Flow Rate upon change. Additionally, we collected outside
temperature and relative humidity (60-second granularity) from
the nearest campus weather station, located a quarter mile (half
kilometer) from the experiment location.

3.2.1 Dataset Curation. The data is comprised of the following fea-
ture groups: biometrics sensor data (Band), body shape information
(Body), subjective comfort data from the mobile device application
(Survey), environmental sensor data from the HVAC system (HVAC),
and outdoor weather station data (Weather). The dataset modalities
themselves are summarized in Table 3. We temporally align the
samples from Band, HVAC, and Weather data to the nearest comfort
labels specified by the Survey data. We observed that Band values
exhibit little volatility in the space of 1 minute, which is the sam-
pling rate of the wearable device and also the maximum temporal
difference between Survey and a Band sample timestamps.

Next, we generated five datasets for evaluation (Table 3), based
on feature subsets of the full data. This will allow us to compare
ablations of our thermal comfort models that are trained with and

without, e.g., body shape information, biometrics features, or exter-
nal weather information (Section 4.2). Featureset-1 (FS1) consists of
9 features. Although we collected other features, such as Activity
and Galvanic Skin Response (GSR), participants did not re-
port many different classes for the former feature: many selected
‘OTHER’ and proceeded to describe their activities in their own
words. For the latter, after fitting a linear regression model with
all the features, we noticed that GSR contributed the least when
compared to the remaining features. Using Featureset-2 (FS2), we ex-
amine the effect of omitting body shape characteristics from trained
models, through direct comparison with FS1. Featureset-3 (FS3) con-
sisted of a more limited set of features. We test the inferential value
of just these modalities, since the first two are easily obtained from
BACNet and local weather stations, respectively (see Tab 3, and
the last three are easily regressed or inferred from depth-camera
sensor data [31]. Featureset-4 (FS4) tests the inferential value of
environmental features alone. Finally, Featureset-5 (FS5) only con-
siders Zone Temperature and serves as a baseline featureset for
which only a room thermostat is needed. Additionally, some partici-
pants exhibit missing Skin Temperature measurements due to faulty
connections between the smartband and the mobile application. To
address this, we proceeded to augment the missing measurements
by implementing the heuristic SkinTemp = RoomTemp + k where
k was drawn from a normal distribution with mean and standard
deviation calculated, using the heuristic, on the instances where
Skin Temperature was successfully recorded. All previous tables
do not consider these new value in their calculations.

We hypothesize that participants with similar physical character-
istics will have similar comfort preferences, as a basis; confounding
factors may be satisfied by, e.g., online adaptation or reinforcement
of the model, over time [29]. We use K-means [27] to discover clus-
ters in the OccuTherm dataset. Clusters were generated according
to the set of modalities that we regard as body shape information:
Height, Shoulder Circumference, and Weight; this information
can be easily estimated or regressed using OccuTherm’s depth-
sensing module (see Section 3.1). We determine the number of
clusters needed and regulate the quality of the clusters, by empiri-
cally minimizing the mean-squared Euclidean distances, between
cluster centers and members, resulting in K = 10. Figure 7 shows
a visualization of the 10 clusters in two-dimensional, t-distributed
stochastic neighbor embedding space (2D t-SNE). We generally
observe cohesion in the distribution of participant body shape in-
formation, encouraging our approach.

3.3 Thermal Comfort Modeling
We pose the thermal comfort modeling task as a supervised multi-
class classification problem, wherein our model estimates the like-
lihood of having accurately predicted a specific comfort label for
an occupant, C = y, conditioned on some context. With the “full”
data featureset in Table 3, FS1, the model’s context consists of Band
(Ba), Body (Bo), Survey (S), HVAC (H ), and Weather (W ) data:

P(Ct = y |Ba,Bo, S,H ,W )

where,

y ∈ Y = {−2,−1, 0, 1, 2}
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Figure 7: 2D t-SNE visualization of thermal comfort partici-
pant cluster membership, with K=10 clusters, based on par-
ticipant body shape information.

Thus, our training objective is tominimize the aggregate negative
log-likelihood of these predictions, over an arbitrary time horizon,
with respect to the corresponding ground-truth comfort labels:2

min
∑

−loд(P(Ct = y |Ba,Bo, S,H ,W ))

For the model architectural class, we select a multi-layer percep-
tron (MLP), as this has been the standard for flexibly representing
and mapping diverse multimodal input distributions, even within
the thermal comfort literature [7, 20, 23, 24]. At each timestep, the
model makes a comfort prediction as a distribution over all the
comfort class labels, given in Table 1b.3 We select the label with
the largest probability mass as the predicted occupant’s comfort
label, given the input context. Our model configuration includes 4
hidden layers (in, 250, 100, 25, 5, out), tanh activations, an adaptive
learning rate with an initialization of 1e−3, batch size of 5, one-hot
label-vector representations, Adaptive moment estimation (Adam)
as the optimization function [25], and an 80%/20% dataset split with
10-fold cross-validation in the training split.

3.3.1 Temperature Set-Point Generation. The OccuTherm thermal
comfort model takes as input body shape and environmental in-
formation and outputs comfort class labels in the set -2, -1, 0, 1,
2. From these labels, we additionally infer the zone temperature
set-point that maximizes the number of participants in the dataset
test split that would report “0” or Comfortable as their subjective
response. We take our trained thermal comfort model and the same
test split that was used in the previous section. The test split, strati-
fied according to participant, is comprised of the subjective comfort
responses (and associated environmental and body shape informa-
tion) for 20% (16) of the total 77 participants. For each participant in
the test set, we perform a forward-pass through the trained comfort
model in order to infer participant comfort preferences. This yields
a distribution over zone temperatures, conditioned on comfort label,
from which we extract the temperature range that maximized the
number of “0” votes across the test set. In Section 4.3, we compare
the resultant temperature set-points with the set-point generated
by baseline control strategies.
2In the machine learning literature, this formulation is also referred to as cross-entropy.
3Time-recurrent neural encoding structures (e.g., LSTMs, GRUs) lend themselves
well to these sequential data inputs and may be placed in front of the MLP classifier.
However, recurrent models have significantly higher training complexity and would
provide best results, only after using various data-augmentation techniques, e.g.,
weakly-supervised generative modeling. We plan to explore this in future work.

4 EVALUATION
We have generated a paired dataset of comfort profiles and physi-
cal characteristics, from 77 participants in a commercial building
environment. Using this data, we now perform an evaluation of
common modeling strategies [7, 20] for empirical thermal comfort
prediction, then we study how powerful physical characteristics
are for estimating the thermal comfort preferences of occupants.
We compare our models to baselines and ablations.

4.1 Body Shape Inference Performance
In this section, we evaluate the performance of OccuTherm in terms
of its ability to estimate human height and shoulder circumference.
Despite having collected ground-truth height, shoulder circumfer-
ence, and depth frames for 77 subjects, we only use data from 72
subjects for evaluating body shape inference, due to logging issues.

4.1.1 Height Estimation Performance. Table 4 shows the perfor-
mance of OccuTherm for estimating human height: the average and
median error is 3.28 cm and 3.0 cm, respectively, when someone is
entering. The average and median error is respectively 2.99 cm and
2.55 cm, when a person is exiting. Considering the mean and me-
dian height of our subjects are 171.25 cm and 171 cm, respectively,
our height estimation has an accuracy of 98%.

4.1.2 Shoulder Circumference Estimation Performance. Table 4 also
shows OccuTherm performance for estimating human shoulder
circumference. We use 40% of the data to fit the linear regression
model (see Section 3.1.2) and the remaining 60% as test data. The
average and median errors for a person entering is 9.96 cm and 8.19
cm; the average and median errors for a person exiting is 10.03 cm
and 9.82 cm. Considering the mean and median shoulder circum-
ference of our subjects are 109.44 cm and 107.15 cm, respectively,
our shoulder circumference estimation is over 90% accurate.

4.2 Thermal Comfort Modeling Performance
In this section, we evaluate OccuTherm in terms of its thermal
comfort inference capability. To remain grounded in the related
literature [7, 17, 23, 24], we evaluate our model across three dimen-
sions: (i) holistic versus personalized comfort models; (ii) binary
versus multi-class classification; and (iii) model ablations using dif-
ferent modality subsets. Throughout each of these experiments, we
consider the evaluative datasets that we generated from our human
comfort experiment (Section 3.2.1, Table 3): FS1 (all features), FS2
(all features, minus body shape information), FS3 (environmental
features and body shape information), FS4 (environmental features
only), and FS5 (zone temperature only). To close this section, we
discuss the effect of specific feature groups, e.g., body shape infor-
mation, for providing models with improved inferential capability.

4.2.1 Baselines. We use datasets FS1-FS5 to compare our chosen
model configuration (Section 3.3) with discriminative classifiers,
such as Random Decision Forest (RDF) and Support Vector Ma-
chines (SVM).We also include the non-parametricK-Nearest Neigh-
bors (k-NN) classifier, the naive Bayes (NB) classifier, the predicted
personal vote (PPV) model proposed by [16], and the predicted mean
vote (PMV) model [8], which remains the baseline for comfort-
aware commercial building control [1]. For all classifier baselines,
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Table 3: We generated five evaluative data subsets: Featureset-1 (FS1) includes environmental sensor information, occupant
physical characteristics, occupant biometrics, and mobile app survey information; FS2 includes all the feature from FS1, ex-
cept the body shape information; FS3 includes environmental sensor information and occupant physical characteristics; FS4
includes only environmental sensor information; and FS5 includes only zone temperature information.

Feature Sets
Collected Features Lin. Reg. Coeff. x 103 FS1 FS2 FS3 FS4 FS5

Zone Temperature (°F) 85.07 ✓ ✓ ✓ ✓ ✓
Outdoor Temperature (°F) 0.23 ✓ ✓ ✓ ✓ ×

Outdoor Relative Humidity (%) 1.86 ✓ ✓ ✓ ✓ ×

Shoulder Circumference (cm) 12.77 ✓ × ✓ × ×

Height (cm) -0.47 ✓ × ✓ × ×

Weight (lbs) -2.11 ✓ × ✓ × ×

Skin Temperature (°F) -2.84 ✓ ✓ × × ×

Clothing Insulation (clo) -596 ✓ ✓ × × ×

Gender -52.59 ✓ ✓ × × ×

Activity 11.96 × × × × ×

GSR 0.00 × × × × ×

(a) (b)

Figure 8: Holistic approach f1-micro results on the test set for the combination of different models with features sets for both
multi-class (a) and binary target featuresets (b).

Table 4: Body shape inference performance

Direction Average Error Median Error

Height Entering 3.28 cm 3.0 cm
Exiting 2.99 cm 2.55 cm

Shoulder
Circumference

Entering 9.96 cm 8.19 cm
Exiting 10.03 cm 9.82 cm

we conduct a hyperparameter grid search with respect to the train-
ing set, and we choose the parameters for each baseline as those of
the model that performed with the highest average 10-fold cross-
validation f1-micro score.

4.2.2 Holistic vs. Personalized. We refer to models that are trained
on the entire population’s thermal comfort data as Holistic comfort

models; here, we do not distinguish the comfort responses of one
participant from the responses of another participant. Instead, we
stratify across all participant data within the train and validation
split, in this way samples from the same participant will not exist
across the train and validation split. This holistic model configura-
tion illustrates a crowd-level thermal comfort prediction strategy,
where individual biases are disregarded and optimization is instead
performed across the entire population. Figure 8 shows the holistic
modeling results for both multi-class and binary approaches; the
value in each tile represents the f1-micro score of a given model
(X-axis), using a specific featureset (Y-axis). For instance, in the
case of thermal comfort as a multi-class problem (Figure 8(a)), we
see an 6% increase in accuracy (f1-micro score) from using only
environmental features (FS3) and environmental and physiological
features (FS1).
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Figure 9: Personalized approach f1-micro results on the test set of Random Forest for a multi-class target feature on only the
first three FS. The model parameters were optimized for each subject based on train/test split, resulting in better performance
for a subset of subjects. This is reflected in the different colors (variance in the performance metrics) across the X-axis.

Conversely, we refer to models trained only on individual partici-
pants’ thermal comfort data as Personalized models. Figure 9 shows
the result of this personalized approach. Through this evaluation,
we are able to observe how the same model performs differently for
each participant. In particular, we see that the tiles can completely
change their color over the horizontal axis. However, even as we
increase the number of features used (Y-axis), the performance for
each subset is generally consistent. This implies that the same per-
sonalized model configuration is able to capture each participant’s
unique set of preferences. Moreover, we see that the highest perfor-
mance achieved in the holistic approach is surpassed by around 20%
of the participants that use the same model in a personalized fash-
ion. This seems consistent with the results obtained by, e.g., Barrios
and Kleiminger [3] who were able to achieve similar performance
for their personalized models on a smaller cohort.

4.2.3 Binary vs. Multi-class. In order to provide binary classifiers
for baseline comparison, we re-map the target labels in each fea-
tureset from the 5-class categorical distribution to a binary one,
with the label “0” representing Comfortable and any label in {-2,-1,
1, 1} representing “1” or Uncomfortable.

Figure 8(b) shows the binary prediction f1-micro scores for
the various classifiers. Naturally, binary characterization reduces
the representational burden on the models, as they only have to
learn to distinguish between two effective distributions. However,
such coarse-grained predictions may not be immediately suitable
for temperature set-point inference, online (and reinforcement)
learning, comfort-aware control, or other downstream tasks.

Figure 8(a) shows model results for multi-class classification.
For the multi-class classification problem, RDF models had for FS1:
Balanced class weights, Gini Index criterion, 2 minimum sample
split, 100 estimators, and tree depth of 10; FS2: changed to 1000 esti-
mators; FS3: changed to entropy criterion, and 100 estimators; FS4:
changed to balanced subsamples, 100 estimators; abd FS5: changed
to 1000 estimators, Gini criterion, and depth of 12. k-NN models
had for FS1: brute-force search as algorithm, standard Euclidean
distance as metric and K = 14; for FS2: K changed to 5; for FS3: K
changed to 13; for FS4: K changed to 4; and for FS5 K changed to 15.

SVMmodels had for all first four FS: C = 1000, balanced class weight,
gamma of 0.1, radial basis function kernel, and one-versus-all deci-
sion function shape, with the exception that C = 1 and gamma of
0.001 for FS5. Naive Bayes models were initialized without priors
with a varitional smoothing of 10e−9. The MLP architecture has
been discussed in Section 3.3. We see that SVMs and NB have the
highest accuracies followed closely by k-NN.

4.2.4 Ablations. We performed our model ablation experiment
by first generating several instances of the OccuTherm comfort
model, then feeding each instance with a unique featureset (Table 3),
during training and evaluation. From figures 8 and 9, we observe the
effect of our ablation experiments, where supervised classification
models show improvements when adding features related to body
shape information, i.e., the tile value increases over the Y-axis. FS1
(all features) improves over FS2 (all features, minus body shape
information) by 8%, illustrating the importance of conditioning our
model’s thermal comfort predictions on body shape information.
We also notice RDF drops significantly with F5. We attribute this
underperformance to the overlapping of Zone Temperature, only
feature in F5, for all comfort labels. This low-dimensional input
with significant temporal interdependencies that the rest of models
are flexible enough to capture, unlike RDF.

4.3 Finding Optimal Temperature Set-Point
In order to validate OccuTherm’s accuracy in temperature set-point
prediction, we compared its comfort prediction capability with five
common fixed temperature control strategies used in practice and
in existing literature. These strategies include a fixed temperature
set-point range that mimics the current control strategy commer-
cial buildings use, a fixed temperature set-point baseline used in
[33] and [14], a reactive set-point model PPV from [16], and two
fixed temperature models based on the mean and median temper-
atures of the validation split. For these baselines, models such as
OccuTherm and PPV that require parameter tuning based on ex-
istent data were trained on a 40/60 train-validation split based on
the number of participants for both FS1 and FS3. This means that
all five models were evaluated in 44 participants. In order to create
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Table 5: Baseline comparison

Models RMSE FS1 RMSE FS3

OccuThermMLP 0.56 0.73
OccuThermRDF 0.65 0.65
SPOT/SPOT+ 0.66 0.66

OccuThermSVM 0.68 0.68
OccuThermNB 0.68 0.68
PPV [-0.5 | 0.5] 0.73 0.73
Median Set Point 0.79 0.79
OccuThermKNN 0.80 0.64
Mean Set Point 0.81 0.81

Measured Building Set Point 0.82 0.82

a range of temperature that each models perceives as a range were
comfortable labels are always produced, the fixed set-point model
were treated as their set-point ± 2°F, whereas in the other models
this range was obtained from the training split. The PPV used the
mininum and maximum temperature at which the training samples
predicted [-0.5, 0.5]. On the other hand, OccuTherm’s comfortable
temperature range was calculated from the temperatures at which
the ‘Comfortable’ label was 0. For each model we calculated the
RMSE across all participants’ responses in the validation split. Only
responses at which the indoor temperature lied within the model’s
‘Comfortable’ temperature range were used:

RMSE =

√√
1
n

n∑
t=1

(0 − y)2

The equation above shows the respective calculation where the
‘predicted’ label is treated as 0 for all models since we are only
considering instances in their respective ‘Comfortable’ tempera-
ture range. y is the ground truth label from the participant. These
results, in terms of RMSE, are summarized in Table 5. Here, we can
see that, when using a feature set that include body shape infor-
mation, such as FS1 and FS3, OccuThermMLP, OccuThermRDF, and
OccuthermKNN are able to surpassed existing control strategies by
0.26 and 0.18, in FS1 and FS3, respectively.

5 DISCUSSION
Though the sample size of our human subject study is significantly
larger than many other thermal comfort studies in the literature, it
is nevertheless small for making claims about the population (e.g.,
commercial building occupants in the US). Despite this, our results
indicate that OccuTherm can estimate body shape information with
high accuracy and, more importantly, can leverage this information
to significantly improve thermal comfort preference predictions
when compared to baselines and feature ablations. Though this
improvement may seem modest, as highlighted in section 4.2.2, it
is worth remembering that OccuTherm works without the need
for frequent user comfort feedback reports and that it leverages
data from depth-imaging sensors, which are quickly becoming
commonplace in indoor environments.Furthermore, to the best of
our knowledge, this is the first demonstration of the predictive
power of body shape information for inferring thermal comfort.

OccuTherm uses a 5-point comfort scale, rather than the 3-point
comfort and 7-point sensation scale proposed by Fanger [1, 8].

Though a systematic analysis of this decision is outside of the scope
of this paper, we note that there is a robust literature dating back
several decades regarding the trade-offs made when using any
particular scale, due to numerous issues including effects on partic-
ipant’s behavior and responses, ability to differentiate results, etc.
Ultimately, the number of choices presented to study participants
(which resembles issues in discrete-choice experiments4) needs to
be chosen wisely and could be studied with more care in future
work. Finally, the train-validation split by participant had an impact
on the model’s performance. When a complete stratification of the
dataset was done first and then split into train and validation, the
OccuTherm k-NN was able to achieve 79% and 72% accuracy in the
binary and multi-class approach. However, this approach allows
the co-existance of samples from the same participant in both splits,
exposing the model to a portion of the participant’s responses
distribution; such a setting could be preferrable for re-occuring
participants. Thus, we opted for the split based on participants.

We used a scale in order to measure weight of the subjects, which
was used as a feature to infer their thermal comfort; in the future,
a model can be built using body shape to regress weights of in-
dividuals. We also noted clothing insulation in the dataset: in the
future, depth frames can be directly used to infer level of clothing
insulation. Note that inaccuracies in the estimation of shoulder
circumference could affect the performance of thermal comfort
inference. People may carry objects, e.g., backpacks, laptops, hel-
ments hanging in the shoulder that could affect the estimation of
shoulder circmference. It may require detection of such objects
as in [30] and refine the shoulder estimate. We leave a thorough
sensitivity analysis on this issue as future work.

We realize that 77 subjects is not large enough to capture all
possible factors (e.g., social, environmental) that could impact the
thermal comfort preference of individuals and the resultant com-
mercial building control strategies [10, 19]. However, it has been
shown that heat dissipation rate of individuals depends on the body
surface area. As a result, a tall and skinny person can tolerate higher
room temperature compared to a person having a rounded body
shape since the tall person has a larger surface to volume ratio
[35]. So, it is intuitive to assume that body shape can be useful to
infer thermal comfort preference of individuals to some extent. We
leave a long term, large scale thermal comfort study to analyze the
impact of other factors as future work.

6 CONCLUSION
In this work, we present OccuTherm, a novel thermal comfort pre-
diction system based on occupant body shape information. We
conducted a human thermal comfort study in a fully-controlled
and fully-sensed smart environment, where biometrics, physical
measurements (height, shoulder circumference), and subjective
comfort responses were recorded and integrated. With this dataset,
we compared holistic comfort models with personalized comfort mod-
els and showed the significance of physical characteristics across a
sample population for thermal comfort modeling. While holistic ap-
proaches can achieve f1-micro scores as high as 0.8, personalized
models can surpass this value. Nevertheless, we saw in Figure 9
that, even if the models are trained for a particular user, it may not

4https://onlinelibrary.wiley.com/doi/abs/10.1002/hec.1587

https://onlinelibrary.wiley.com/doi/abs/10.1002/hec.1587
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perform as well for others. Further exploration of the sensitivity
of our model to the input features is warranted in order to fully
understand the impact of these on the thermal comfort prediction
in both the holistic and personalized settings, especially in light of
possible privacy implications of the data that OccuTherm collects.
Finally, we make our code, datasets, models, and mobile application
available to the community.

Our results open many promising avenues of future research.
Given the need for additional human subject samples, data augmen-
tation could be investigated as well as novel semi-supervised ways
to take advantage of the much larger collection of depth-imaging
data that is available without thermal comfort labels. If more data
becomes available, learning embeddings for more generalizable
comfort models could be fruitful. Finally, though OccuTherm was
described here as an inference system, there is significant poten-
tial for including it in a closed-loop control scenario, where we
may perform online learning and elicit thermal comfort responses
opportunistically in order to improve the models.
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