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ABSTRACT
Thermal comfort is very important for well-being and productivity
of building occupants. It has been shown that body shape is a
useful feature to determine thermal comfort of individuals [2]. It
is because, the heat dissipation rate of individuals depends on the
body surface area. As a result, a tall and skinny person can tolerate
higher room temperature than a rounded body shape person [5]. In
order to test this hypothesis, we performed a year-long experiment
in 2017, where we recruited 77 participants and put each of them
in a thermally controlled conference room in CMU for 3 hours
and recorded their subjective responses regarding thermal comfort
at different temperature ranging from 60°F to 80°F. In addition,
we collected depth data of individuals using a vertically mounted
Microsoft Kinect for XBOX One at the entrance of the conference
room to capture their body shape. We also collected biometric
features (e.g., Galvanic Skin Response (GSR), skin temperature)
using a Microsoft Health Band worn by the subjects. The resulting
dataset provides rich information regarding how different features
can be used to infer thermal comfort of the individuals.
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1 INTRODUCTION
Thermal comfort is crucial for physical and mental well-being as
well as productivity of building occupants. However, it is very
difficult to infer the thermal comfort preference of individuals as
it is determined by many factors including air temperature, mean
radiant temperature, air velocity, humidity, clothing insulation,
and metabolic rate of individuals. Recent work [2] shows that body
shape is a useful feature to determine thermal comfort of individuals.
The reason is, the heat dissipation rate of individuals depends on the
body surface area. As a result, a tall and skinny person can tolerate
higher room temperature than a rounded body shape person [5]. As
depth sensors are getting cheaper, they provide a viable opportunity
to capture body shape information.

We perform data collection in a conference room in CMU. A
Kinect for XBOX One was mounted at the ceiling of the entrance
way of the conference room similar to [4] [3] as shown in Figure 1.
We recruited 77 participants and put each of them in the conference
room separately for 3 hours while we controlled the room tem-
perature from 60°F to 80°F and received their subjective responses
regarding their thermal comfort using a smart phone app. Each
subject wore a Microsoft Health Band during the procedure that
allowed us to capture different biometric features, e.g., GSR, and
skin temperature.

2 DATA
Our dataset consists of the following information:

(1) Depth Data: Each subject was asked to stand underneath
the depth sensor for oneminute facing inside and oneminute
facing outside of the conference room. Then each subject
was asked to walk in 10 times and walk out 10 times through
the doorway so that we can capture body shape in motion.
The Kinect was connected to an Intel Next Unit of Comput-
ing (NUC), where we collected raw depth frames at around
30 FPS. The resolution of each depth frame is 512x424, where
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Figure 1: Deployment of an Microsoft Kinect for depth data-
collection highlighted by a blue square.

each pixel gives us the distance from the sensor to the nearest
object in millimeters. A sample depth image and correspond-
ing RGB image is shown in Figure 2 when someone was
walking in the conference room. Note that the RGB image
here is only for illustration purpose. The dataset contains
only the depth images. We remove the RGB images to protect
the privacy of the participants.

(2) Height and Shoulder Circumference: A measuring tape
was used to measure height and shoulder circumference of
each subject. It can serve as ground truth for inferring body
shape parameters using depth frames.

(3) Weight: A scale was used to measure weight of each subject.
(4) ThermalComfortResponse: A smartphone appwas used

to get subjective response from each subject about the level
of thermal comfort in every five minutes. The subjects could
provide responses in a five point scale: uncomfortably cold
(-2), slightly uncomfortably cold (-1), comfortable (0), slightly
uncomfortably warm (1), and uncomfortably warm (2). A
screenshot of the app is shown in Figure 3.

(5) Clothing: For top clothing, the following classes were re-
ported using the smartphone app: sleeveless blouse, short-
sleeve shirt, long-sleeve shirt, sweater, sleeveless dress, short-
sleeve shirtdress (thin), long-sleeve shirtdress (thin), and
long-sleeve shirtdress (thin). For bottom clothing, the classes
were shorts, long pants (thin), long pants (thick), skirt (thin),
and skirt (thick). For outer layer clothing, the classes were
sleeveless vest (thin), sleeveless vest (thick), long-sleeve
sweater/jacket (thin), long-sleeve sweater/jacket (thick), and
coat/suit jacket (thick).

(6) Activity: The participants reported their activity during
data collection using the smartphone app as the follwing
classes: lunchtime activity, meeting, presenting, recreation,
socializing, working, and other.

(7) Biometric Features: Each subject was wearing a Microsoft
Health Band that reported once in every minute the fol-
lowing biometric features: Galvanic Skin Resistance (GSR),
calories burned per minute, and skin temperature of the
participant’s wrist.

(8) Room Temperature: Indoor air temperature was mea-
sured by the local thermostat in every minute.

(9) Outside Temperature: The outside temperature was mea-
sured by a weather station on campus in ten minute intervals.

(a) (b)

Figure 2: A sample depth image (a) and corresponding RGB
image (b) of when someone is going in.

(10) Outside Humidity: The outside relative humidity (RH)
was measured by a weather station on campus every ten
minutes.

(11) Gender: Participants were asked to enter their gender be-
fore the start of the experiment.

Thermal comfort response, clothing response, activity levels,
biometric features, room temperature, outside temperature, and
humidity information are time synchronized and put together into
a single CSV file for ease of analysis. An example of how to use this
dataset to infer thermal comfort is available in [2]. The dataset is
available for download from here [1].

Figure 3: User interface of the mobile application that was
used during the thermal comfort experiment.
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